Page 16 -
P. 16

XVIII Table of Contents

                                    7.1.3 Parity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
                                    7.1.4 A Summary of the Relations between Kernels
                                          and Symbols..................................... 392
                               7.2 Coordinate Changes and Pseudohomogeneous Kernels . . . . . . . 394
                                    7.2.1 The Transformation of General Hadamard Finite Part
                                          Integral Operators under Change of Coordinates . . . . . 397
                                    7.2.2 The Class of Invariant Hadamard Finite Part Integral
                                          Operators under Change of Coordinates . . . . . . . . . . . . . 404
                           8.  Pseudodifferential and Boundary Integral Operators ...... 413
                               8.1 Pseudodifferential Operators on Boundary Manifolds . . . . . . . . 414
                                    8.1.1 Ellipticity on Boundary Manifolds . . . . . . . . . . . . . . . . . . 418
                                    8.1.2 Schwartz Kernels on Boundary Manifolds. . . . . . . . . . . . 420
                               8.2 Boundary Operators Generated by Domain
                                    Pseudodifferential Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
                               8.3 Surface Potentials on the Plane IR n−1  ..................... 423
                               8.4 Pseudodifferential Operators with Symbols of Rational Type . 446
                               8.5 Surface Potentials on the Boundary Manifold Γ ............ 467
                               8.6 Volume Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
                               8.7 Strong Ellipticity and Fredholm Properties . . . . . . . . . . . . . . . . 479
                               8.8 Strong Ellipticity of Boundary Value Problems
                                    and Associated Boundary Integral Equations . . . . . . . . . . . . . . . 485
                                    8.8.1 The Boundary Value and Transmission Problems . . . . . 485
                                    8.8.2 The Associated Boundary Integral Equations
                                          of the First Kind ................................. 488
                                    8.8.3 The Transmission Problem and G˚arding’s inequality . . 489
                               8.9 Remarks .............................................. 491
                                                             3
                           9.  Integral Equations on Γ ⊂ IR Recast
                               as Pseudodifferential Equations ........................... 493
                               9.1 Newton Potential Operators for Elliptic Partial Differential
                                    Equations and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
                                    9.1.1 Generalized Newton Potentials for the Helmholtz
                                          Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
                                    9.1.2 The Newton Potential for the Lam´e System. ......... 505
                                    9.1.3 The Newton Potential for the Stokes System . . . . . . . . . 506
                               9.2 Surface Potentials for Second Order Equations . . . . . . . . . . . . . 507
                                    9.2.1 Strongly Elliptic Differential Equations . . . . . . . . . . . . . . 510
                                    9.2.2 Surface Potentials for the Helmholtz Equation . . . . . . . 514
                                    9.2.3 Surface Potentials for the Lam´e System ............. 519
                                    9.2.4 Surface Potentials for the Stokes System . . . . . . . . . . . . 524
                               9.3 Invariance of Boundary Pseudodifferential Operators . . . . . . . . 524
                                    9.3.1 The Hypersingular Boundary Integral Operators
                                          for the Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . 525
   11   12   13   14   15   16   17   18   19   20   21