Page 17 -
P. 17

Table of Contents  XIX

                                    9.3.2 The Hypersingular Operator for the Lam´e System . . . . 531
                                    9.3.3 The Hypersingular Operator for the Stokes System . . . 535
                               9.4 Derivatives of Boundary Potentials . . . . . . . . . . . . . . . . . . . . . . . 535
                                    9.4.1 Derivatives of the Solution to the Helmholtz Equation 541
                                    9.4.2 Computation of Stress and Strain on the Boundary
                                          for the Lam´e System .............................. 543
                               9.5 Remarks .............................................. 547
                                                                             2
                           10. Boundary Integral Equations on Curves in IR ............ 549
                               10.1 Fourier Series Representation of the Basic Operators . . . . . . . . 550
                               10.2 The Fourier Series Representation of Periodic Operators
                                         m
                                    A ∈L (Γ) ............................................ 556
                                         c
                               10.3 Ellipticity Conditions for Periodic Operators on Γ .......... 562
                                    10.3.1 Scalar Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
                                    10.3.2 Systems of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
                                    10.3.3 Multiply Connected Domains . . . . . . . . . . . . . . . . . . . . . . 572
                               10.4 Fourier Series Representation of some Particular Operators . . 574
                                    10.4.1 The Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 574
                                    10.4.2 The Lam´e System ................................ 578
                                    10.4.3 The Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
                                    10.4.4 The Biharmonic Equation . . . . . . . . . . . . . . . . . . . . . . . . . 582
                               10.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

                           A. Differential Operators in Local Coordinates
                               with Minimal Differentiability ............................ 593

                           References .................................................... 599

                           Index ......................................................... 613
   12   13   14   15   16   17   18   19   20   21   22