Page 15 -
P. 15

Table of Contents  XVII

                                    5.5.2 Exterior Boundary Value Problems . . . . . . . . . . . . . . . . . 264
                                    5.5.3 Transmission Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
                               5.6 Solution of Integral Equations via Boundary Value Problems . 265
                                    5.6.1 The Generalized Representation Formula for Second
                                          Order Systems ................................... 265
                                    5.6.2 Continuity of Some Boundary Integral Operators . . . . . 267
                                    5.6.3 Continuity Based on Finite Regions. . . . . . . . . . . . . . . . . 270
                                    5.6.4 Continuity of Hydrodynamic Potentials . . . . . . . . . . . . . 272
                                    5.6.5 The Equivalence Between Boundary Value Problems
                                          and Integral Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
                                    5.6.6 Variational Formulation of Direct Boundary Integral
                                          Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
                                    5.6.7 Positivity and Contraction of Boundary Integral
                                          Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
                                    5.6.8 The Solvability of Direct Boundary Integral Equations 291
                                    5.6.9 Positivity of the Boundary Integral Operators
                                          of the Stokes System .............................. 292
                               5.7 Partial Differential Equations of Higher Order . . . . . . . . . . . . . . 293
                               5.8 Remarks .............................................. 299
                                    5.8.1 Assumptions on Γ ................................ 299
                                    5.8.2 Higher Regularity of Solutions . . . . . . . . . . . . . . . . . . . . . 299
                                    5.8.3 Mixed Boundary Conditions and Crack Problem . . . . . 300

                           6.  Introduction to Pseudodifferential Operators ............. 303
                               6.1 Basic Theory of Pseudodifferential Operators . . . . . . . . . . . . . . 303
                                                                              n
                               6.2 Elliptic Pseudodifferential Operators on Ω ⊂ IR ........... 326
                                    6.2.1 Systems of Pseudodifferential Operators . . . . . . . . . . . . . 328
                                    6.2.2 Parametrix and Fundamental Solution . . . . . . . . . . . . . . 331
                                    6.2.3 Levi Functions for Scalar Elliptic Equations . . . . . . . . . 334
                                    6.2.4 Levi Functions for Elliptic Systems . . . . . . . . . . . . . . . . . 341
                                    6.2.5 Strong Ellipticity and G˚arding’s Inequality . . . . . . . . . . 343
                               6.3 Review on Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . . . 346
                                    6.3.1 Local Fundamental Solutions . . . . . . . . . . . . . . . . . . . . . . 347
                                                                   n
                                    6.3.2 Fundamental Solutions in IR for Operators
                                          with Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 348
                                    6.3.3 Existing Fundamental Solutions in Applications . . . . . . 352

                           7.  Pseudodifferential Operators as Integral Operators ....... 353
                               7.1 Pseudohomogeneous Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
                                    7.1.1 Integral Operators as Pseudodifferential Operators
                                          of Negative Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
                                    7.1.2 Non–Negative Order Pseudodifferential Operators
                                          as Hadamard Finite Part Integral Operators . . . . . . . . . 380
   10   11   12   13   14   15   16   17   18   19   20