Page 105 - Introduction to Statistical Pattern Recognition
P. 105

3  Hypothesis Testing                                          87




                                                     PI
                                               t=ln--,                         (3.102)
                                                     p2
                                                                               (3.103)
                                            a* = a: = a: = 27  ,
                    Thus, when the density function of the likelihood ratio is normal, the probabili-
                    ties of error can be obtained from the table of @(.).

                    General Error Expression

                         Error expression: Before computing the error of  the quadratic classifier
                    for  normal  distributions, let  us  express  the  error  of  a  classifier  in  a  general
                    form.  Let a classifier be


                                                                               (3.104)

                    Then, the ol -error is








                                                                               (3.105)


                    where u(.) is the step function.  The second line is obtained by  using  the fact
                    that  the  Fourier  transform  of  a  step function,  u(h), is  [K&(O) + lijw].  Like-
                    wise, the 02-error is









                                                                               (3.106)

                    Then, the total error becomes
   100   101   102   103   104   105   106   107   108   109   110