Page 108 - Introduction to Statistical Pattern Recognition
P. 108

90                         Introduction to Statistical Pattern Recognition



                           we  can carry out the integration numerically, even if  F,(o) is a compli-
                           cated function and not integrable explicitly.

                           Example 10:  In order to confirm the above discussion, let us  study a
                       simple case with two normal distributions: Nx(O,I) and Nx(M,I).  From (3.12),
                       the Bayes classifier becomes
                                                          1
                                            h (X) = MTX - -MTM  ,                (3.1 15)
                                                          2
                       and the ol-density function Nx(O,I) is expressed by
                                                    1        1
                                          Pl(X) =      exp[--xTx].                (3.1 16)
                                                 (2X)"'*     2
                                                 ~










                                                         1       1
                             = INx( joM,I)exp          - -joMTM  dX
                                                         2

                                     o2
                              = exp I--MTM   -                                    (3.1 17)
                                     2
                       Equation (2.24) shows the characteristic function of  a multivariate normal dis-
                       tribution, and  (3.117)  is  a  special case  for one-dimension.  Therefore, taking
                       the inversion,
                                             GdiZii  [-      (h + MTM22)2         (3.1 18)
                                                  1
                                   Ph(h 101) =                  2MTM

                       That  is,  the  w,-distribution  of  h  has  E(hlol ) =-MTM/2  and
                               1
                       Var( h I  ol = MTM, which are identical to (3.97) and (3.99) for M 1=0, &=M,
                       and CI=C2=I,
   103   104   105   106   107   108   109   110   111   112   113