Page 109 - Introduction to Statistical Pattern Recognition
P. 109

3  Hypothesis Testing                                         91


                     Quadratic Classifiers

                          For a normal test distribution: When  the  quadratic classifier of  (3.1 1)
                     is designed and tested on a normal distribution pT(X), h (X) and p7(X) can  be
                     given as










                     and





                     where t of  (3.1 19) is a threshold.  Applying simultaneous diagonalization and a
                     coordinate shift, Y = A T(X-M,),
                                   ATXTA =I  and  A7(&'--Cs1)-'A  =A.          (3.121)
                     Then, M, and Zj are converted to

                                AT(Mj - MT) = Di  and  A7&A  = Kj  (i=1,2).    (3.122)
                     Thus, in the Y-space

                                               1
                                        h(Y) = -YTA-'Y  - V'Y  + c  ,          (3.123)
                                               2

                                                                               (3.124)


                     where

                                V = KT'D, - KT1D2 ,                            (3.125)


                                                            1
                                                                 IKlI
                                    1
                                                         +
                                c = -(D~KT'D~ - D:K:~D~) 2 in -                (3.126)
                                                                        t.
                                                                      -
                                    2                            IK,I
                    The characteristic function FT(a) can be computed now as
   104   105   106   107   108   109   110   111   112   113   114