Page 28 - Introduction to Statistical Pattern Recognition
P. 28

10                          Introduction to Statistical Pattern Recognition



                      M =E { X ) = EL  PiM;              Expected vector of the mixture
                                  r=l
                                                         density
                      Zi =E {(X -M;)(X --Mi)‘   I  O; }   Covariance matrix of O;

                      Z =E{ (X -M)(X - M)’}
                             (PJ, +P,(M, -M)(M; -M)‘ 1   Covariance matrix of the
                          r=l
                                                         mixture density

                      References


                      1.   K. Fukunaga, “Introduction to Statistical Pattern Recognition,” Academic
                           Press, New York, 1972.

                      2.   R. 0. Duda and P. E. Hart, “Pattern Classification and Scene Analysis,”
                           Wiley, New York, 1973.
                      3.   P.  R.  Devijver  and  J.  Kittler,  “Pattern  Recognition:  A  Statistical
                           Approach,” Prentice-Hall, Englewood Cliffs, New Jersey, 1982.
                      4.   A.  K.  Agrawala (ed.),  “Machine Recognition of Patterns,”  IEEE Press,
                           New York, 1977.
                      5.   L.  N.  Kanal,  Patterns  in  pattern  recognition:  1968-1972, Trans. IEEE
                           Inform. Theory, IT-20, pp. 697-722,1974.
                      6.   P.  R.  Krishnaiah  and  L.  N.  Kanal  (eds.),  “Handbook  of  Statistics 2:
                           Classification, Pattern  Recognition  and  Reduction  of  Dimensionality,”
                           North-Holland, Amsterdam, 1982.
                      7.   T. Y.  Young and K. S. Fu  (eds.), “Handbook of Pattern Recognition and
                           Image Processing,” Academic Press, New York, 1986.
   23   24   25   26   27   28   29   30   31   32   33