Page 327 - Introduction to Statistical Pattern Recognition
P. 327

7  Nonparametric Classification and Error Estimation          309









                                            t t        ttc           =  4/N





                                            tt            t   e2NN   =  3/N


                                    Fig. 7-3 Example of kNN classification.


                    Multiclass NN

                         The  voting NN  procedure can  also  be  applied  to  general L-class  prob-
                    lems, in  which  a test sample is classified to  the class of  the NN sample.  The
                    asymptotic conditional risk is

                                               L                L
                                  4 (XI = 9 I (X)  s;(X)+. . . +9L(X) c q;(X)
                                             ;=I               ;=I
                                              jt I             ;#L
                                         L                   L
                                       = cq;(X)[l-qi(X)I  = 1 - Zq?(X).         (7.21)
                                         i=l                i=l

                    On the other hand, the Bayes conditional risk is
                                                                   .
                                     I-*(x) = I  - max{q,(X)j  = 1 - q,(x)      (7.22)
                                                J
                    Using the Schwanz's  inequality,
                                    L         L
                              (L-1)   qj(X) 2[ 2 q;(X)I2 = [1-q;(X)I2 = r.*2(X) .   (7.23)
                                   ;=1       j= I
                                   j  ti     j  t;
                    Adding (L -l)q2 (X) to both sides,
                                       L
                                  (L-l)xq;(x) >I-"*(X) + (L-l)[I-,.*(x)p        (7.24)
                                       /=I
                    Substituting (7.24) into (7.21) [I],
   322   323   324   325   326   327   328   329   330   331   332