Page 131 - Materials Chemistry, Second Edition
P. 131
112 Life Cycle Assessment of Wastewater Treatment
Bethi, B., S.H. Sonawane, B.A. Bhanvase, and S. Gumfekar. 2016. Nanomaterials based
advanced oxidation processes for waste water treatment: A review. Chemical
Engineering and Processing: Process Intensification 109: 178–189.
Beton, A., D. Dias, L. Farrant, T. Gibon, Y. Le Guern, M. Desaxce, A. Perwueltz, et al. 2014.
Environmental Improvement Potential of Textiles (IMPRO Textiles). European Union,
Luxembourg: Publications Office of the European Union.
Blanco, J., F. Torrades, M. De la Varga, and J. García-Montaño. 2012. Fenton and biological-
Fenton coupled processes for textile wastewater treatment and reuse. Desalination 286:
394–399.
Bousnoubra, I., K. Djebbar, A. Abdessemed, and T. Sehili. 2016. Decolorization of methyl
green and bromocresol purple in mono and binary systems by photochemical processes:
Direct UV photolysis, acetone/UV and H O 2 /UV. A comparative study. Desalination
2
and Water Treatment 57 (57): 27710–27725.
Cabana, H., A. Ahamed, and R. Leduc. 2011. Conjugation of laccase from the white rot fun-
gus Trametes versicolor to chitosan and its utilization for the elimination of triclosan.
Bioresource Technology 102: 1656–1662.
Casas, N., T. Parella, T. Vicent, G. Caminal, and M. Sarrà. 2009. Metabolites from the bio-
degradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere
75 (10): 1344–1349.
Ciardelli, G. and N. Ranieri. 2001. The treatment and reuse of wastewater in the textile indus-
try by means of ozonation and electroflocculation. Water Research 35 (2): 567–572.
Champagne, P.P. and J.A. Ramsay. 2010. Dye decolorization and detoxification by laccase
immobilized on porous glass beads. Bioresource Technology 101 (7): 2230–2235.
Chen, W., C.K.M. Lau, D. Boansi, and M.H. Bilgin. 2017a. Effects of trade cost on the textile
and apparel market: Evidence from Asian countries. The Journal of the Textile Institute
108 (6): 971–986.
Chen, X., Z. Wu, D. Liu, and Z. Gao. 2017b. Preparation of ZnO photocatalyst for the effi-
cient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters 12
(1): 143.
Chequer, F.M.D., G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni, and D.P.
de Oliveira. 2013. Textile dyes: Dyeing process and environmental impact. In Eco-
Friendly Textile Dyeing and Finishing, edited by Melih Günay. Rijeka: InTech.
Christie, R. 2001. Colour Chemistry. Royal Society of Chemistry, London, UK.
Chung, K. 1983. The significance of azo-reduction in the mutagenesis and carcinogenesis of
azo dyes. Mutation Research/Reviews in Genetic Toxicology 114 (3): 269–281.
Chung, J. and J. Kim. 2011. Application of advanced oxidation processes to remove refractory
compounds from dye wastewater. Desalination and Water Treatment 25 (1–3): 233–240.
De Diesbach, H. and E. Von der Weid. 1927. Quelques sels complexes des o-dinitriles avec le
cuivre et la pyridine. Helvetica Chimica Acta 10 (1): 886–888.
De Lima, R.O.A., A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D. De Palma Oliveira, and G. De
Aragão Umbuzeiro. 2007. Mutagenic and carcinogenic potential of a textile azo dye
processing plant effluent that impacts a drinking water source. Mutation Research/
Genetic Toxicology and Environmental Mutagenesis 626 (1–2): 53–60.
Demirbaş, Ü., H.T. Akçay, A. Koca, and H. Kantekin. 2017. Synthesis, characterization and
investigation of electrochemical and spectroelectrochemical properties of peripherally
tetra 4-phenylthiazole-2-thiol substituted metal-free, zinc(II), copper(II) and cobalt(II)
phthalocyanines. Journal of Molecular Structure 1141: 643–649.
DiCosimo, R., J. McAuliffe, A.J. Poulose, and G. Bohlmann. 2013. Industrial use of immobi-
lized enzymes. Chemical Society Reviews 42 (15): 6437–6474.
Duran, N., M.A. Rosa, A. D’Annibale, and L. Gianfreda. 2002. Applications of laccases and
tyrosinases (phenoloxidases) immobilized on different supports: A review. Enzyme and
Microbial Technology 31: 907–931.