Page 92 - Materials Chemistry, Second Edition
P. 92
Life Cycle Assessment of Beneficial Reuse of Waste Streams 73
Bi, C., Min, M., Nie, Y., Xie, Q., Lu, Q., Deng, X., and Ruan, R. (2015). Process development
for scum to biodiesel conversion. Bioresource Technology, 185, 185–193. doi:10.1016/j.
biortech.2015.01.081.
Biller, P., Riley, R., and Ross, A. (2011). Catalytic hydrothermal processing of microalgae:
Decomposition and upgrading of lipids. Bioresource Technology, 102(7), 4841–4848.
doi:10.1016/j.biortech.2010.12.113.
Buonocore, E., Mellino, S., De Angelis, G., and Liu, G. (2016). Life cycle assessment indi-
cators of urban wastewater and sewage sludge treatment. Ecological Indicators.
doi.org/10.1016/j.ecolind.2016.04.047, accessed 20 May.
Cao, Y. and Pawłowski, A. (2013). Life cycle assessment of two emerging sewage sludge-
to-energy systems: Evaluating energy and greenhouse gas emissions implications.
Bioresource Technology, 127, 81–91.
Chang, F., Wang, C., Wang, Q., Jia, J., and Wang, K. (2016). Pilot-scale pyrolysis experiment
of municipal sludge and operational effectiveness evaluation. Energy Sources, Part A:
Recovery, Utilization, and Environmental Effects, 38(4), 472–477.
Clarens, A. F., Nassau, H., Resurreccion, E. P., White, M. A., and Colosi, L. M. (2011).
Environmental impacts of algae-derived biodiesel and bioelectricity for trans-
portation. Environmental Science & Technology, 45(17), 7554–7560. doi:10.1021/
es200760n.
Clarens, A. F., Resurreccion, E. P., White, M. A., and Colosi, L. M. (2010). Environmental
Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environmental
Science & Technology, 44(5), 1813–1819. doi:10.1021/es902838n.
Davis, R. S., and Slaughter, J. B. (2006). Biosolids Management: Options, Opportunities
& Challenges. Washington, DC: National Association of Clean Water Agencies
(NACWA).
Fonts, I., Juan, A., Gea, G., Murillo, M. B., and Sanchez, J. L. (2008). Sewage Sludge
Pyrolysis in Fluidized Bed, 1: Influence of Operational Conditions on the Product
Distribution. Industrial & Engineering Chemistry Research, 47(15), 5376–5385.
doi:10.1021/ie7017788.
Frank, E., Han, J., Palou-Rivera, I., Elgowainy, A., and Wang, M. (2011). Life-Cycle Analysis
of Algal Lipid Fuels with the GREET Model (United States Department of Energy,
Argonne National Laboratory). Oakridge, TN: Argonne National Laboratory.
Gourdet, C., Girault, R., Berthault, S., Richard, M., Tosoni, J., and Pradel, M. (2017). In quest
of environmental hotspots of sewage sludge treatment combining anaerobic digestion
and mechanical dewatering: A life cycle assessment approach. Journal of Cleaner
Production, 143, 1123–1136. doi:10.1016/j.jclepro.2016.12.007.
GREET (2015). The Greenhouse Gases, Regulated Emissions, and Energy Use in
Transportation Model. Argonne, IL: Argonne National Laboratory.
Hospido, A., Moreira M., Martin, M., and Feijoo, G. (2005). Environmental evaluation of
different treatment processes for sludge from urban wastewater treatments: Anaerobic
digestion versus thermal processes. The International Journal of Life Cycle Assessment,
10(5), 336–345.
Kajitvichyanukul, P., Ananpattarachai, J., Amuda, O. S., Alade, A. O., Hung, Y., and Wang,
L. K. (2008). Landfilling engineering and management. In: Wang L. K., Shammas N. K.,
Hung YT. (eds). Biosolids Engineering and Management. Handbook of Environmental
Engineering, Vol. 7, Humana Press.
Lardon, L., Hélias, A., Sialve, B., Steyer, J., and Bernard, O. (2009). Life-cycle assessment of
biodiesel production from microalgae. Environmental Science & Technology, 43(17),
6475–6481. doi:10.1021/es900705j.
McCarty, P.L., Bae, J., and Kim, J. (2011). Domestic wastewater treatment as a net energy pro-
ducer can this be achieved? Environmental Science & Technology 45(17), 7100–7106.
http://dx.doi.org/10.1021/es2014264.