Page 93 - Materials Chemistry, Second Edition
P. 93
74 Life Cycle Assessment of Wastewater Treatment
Menetrez, M. Y. (2012). An overview of algae biofuel production and potential environmental
impact. Environmental Science & Technology, 46(13), 7073–7085. doi:10.1021/es300917r.
Metcalf and Eddy, Inc. (2003). Wastewater Engineering Treatment and Reuse, 4th Ed.
New York: Tata McGraw-Hill.
Metropolitan Council Environmental Services (2014). Waste Water Treatment for
Youngsters [Brochure]. St Paul, MN: Metropolitan Council Environmental Services.
https://metrocouncil.org/Wastewater-Water/Publications-And-Resources/MCES-
INFORMATION/Educational/ES_kids_book-pdf.aspx.
Mills, N., Pearce, P., Farrow, J., Thorpe, R., and Kirkby, N. (2014). Environmental & eco-
nomic life cycle assessment of current & future sewage sludge to energy technologies.
Waste Management, 34(1), 185–195. doi:10.1016/j.wasman.2013.08.024.
Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., and Zhou, W. G. (2011). Cultivating Chlorella
sp in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass
production and wastewater nutrient removal. Applied Biochemistry and Biotechnology,
165(1), 123–137.
Mu, D., Addy, M., Anderson, E., Chen, P., and Ruan, R. (2016). A life cycle assessment and
economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants.
Bioresource Technology, 204, 89–97. doi:10.1016/j.biortech.2015.12.063.
Mu, D., Min, M., Krohn, B., Mullins, K. A., Ruan, R., and Hill, J. (2014). Life cycle envi-
ronmental impacts of wastewater-based algal biofuels. Environmental Science &
Technology, 48(19), 11696–11704. doi:10.1021/es5027689.
Murphy, F., and Allen, T. (2011). Energy-water nexus for mass cultivation of algae.
Environmental Science & Technology, 45, 5861–5868.
National Algal Biofuels Technology Roadmap. (2010). Office of Energy Efficiency and
Renewable Energy, Biomass Program, United States Department of Energy: College
Park, MD.
NREL (National Renewable Energy Laboratory) (2010). Techno-economic analysis of bio-
mass fast pyrolysis to transportation fuels; NREL/TP-6A20-46586. Washington, DC:
National Renewable Energy Laboratory. www.nrel.gov/docs/fy11osti/46586.pdf.
PNNL (Pacific Northwest National Laboratory) (2016). Hydrothermal Liquefaction
and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary
Techno-Economic Analysis. Prepared for the U.S. Department of Energy under
Contract DE-AC05-76RL01830. Pacific Northwest National Laboratory Richland,
Washington 99352.
Pradel, M., Aissani, L., Villot, J., Baudez, J.-C., and Laforest, V. (2016). From waste to added
value product: Towards a paradigm shift in life cycle assessment applied to wastewater
sludge—a review. Journal of Cleaner Production, 131, 60–75.
Quinn, J., Catton, K. B., Johnson, S., and Bradley, T. H. (2013). Geographical assessment of
microalgae biofuels potential incorporating resource availability. Bioenergy Research,
6, 591–600.
Reilly, M. (2001). The Case against Land Application of Sewage Sludge Pathogens. Canadian
Journal of Infectious Diseases, 12(4), 205–207. doi:10.1155/2001/183583
Rice, C. P., O’Keefe, P., and Kubiak, T. (2003). Sources, pathways, and effects of PCBs, dioxins,
and dibenzofurans. In D. J. Hoffman, B. A. Rattner, G. A. Burton, Jr., and J. Cairns,
Jr. (eds.), Handbook of Ecotoxicology (pp. 501–574), 2nd Ed. New York: Lewis.
Ruiz, H. A., Rodríguez-Jasso, R. M., Fernandes, B. D., Vicente, A. A., and Teixeira, J. A.
(2013). Hydrothermal processing, as an alternative for upgrading agriculture residues
and marine biomass according to the biorefinery concept: A review. Renewable and
Sustainable Energy Reviews, 21, 35–51. doi:10.1016/j.rser.2012.11.069.
Singh, A. and Olsen, S. I. (2013). A critical review of biochemical conversion, sustainability
and life-cycle assessment of algal biofuels. Applied Energy, 101, 822. doi:10.1016/j.
apenergy.2011.01.052.