Page 213 - A First Course In Stochastic Models
P. 213

206                    MARKOV CHAINS AND QUEUES


                          0, L    •  •  •                      •  •  •  c − L, L
                                             i 1 , i 2 + 1

                            •
                            •
                                                    2
                            •               l 2    (i + 1)m 2
                                            l 1    l 1
                          0, i 2
                                      i 1 − 1, i 2  i 1 , i 2  i 1 + 1, i 2
                                           i 1 m 1  (i 1 + 1)m 1
                            •
                                            l 2    i 2 m 2
                            •
                            •
                                             i 1 , i 2 − 1
                          0, 0    •  •  •                      •  •  •  c , 0

                            Figure 5.4.1 The transition rate diagram for the L-rule


                state probabilities p(i 1 , i 2 ). For the states (i 1 , i 2 ) with i 1 + i 2 < c and i 2 < L,
                     (i 1 µ 1 + i 2 µ 2 + λ 1 + λ 2 )p(i 1 , i 2 ) = λ 1 p(i 1 − 1, i 2 ) + λ 2 p(i 1 , i 2 − 1)

                                                   + (i 1 + 1)µ 1 p(i 1 + 1, i 2 )
                                                   + (i 2 + 1)µ 2 p(i 1 , i 2 + 1).
                For the states (i 1 , i 2 ) with i 1 + i 2 < c and i 2 = L,

                       (i 1 µ 1 + i 2 µ 2 + λ 1 )p(i 1 , i 2 ) = λ 1 p(i 1 − 1, i 2 ) + λ 2 p(i 1 , i 2 − 1)
                                                 + (i 1 + 1) µ 1 p(i 1 + 1, i 2 ).

                For the states (i 1 , i 2 ) with i 1 + i 2 = c and i 2 ≤ L,

                         (i 1 µ 1 + i 2 µ 2 )p(i 1 , i 2 ) = λ 1 p(i 1 − 1, i 2 ) + λ 2 p(i 1 , i 2 − 1).
                The state probabilities p(i 1 , i 2 ) exhibit the so-called product form

                                         (λ 1 /µ 1 ) (λ 2 /µ 2 ) i 2
                                                i 1
                              p(i 1 , i 2 ) = C           ,  i 1 , i 2 ∈ I
                                            i 1 !    i 2 !
                for some constant C > 0. The reader may verify this result by direct substitution
                into the equilibrium equations. Since service completions occur in state (i 1 , i 2 ) at
                a rate of i 1 µ 1 + i 2 µ 2 , the average throughput is given by

                                   T (L) =   (i 1 µ 1 + i 2 µ 2 )p(i 1 , i 2 ).
                                         (i 1 ,i 2 )
   208   209   210   211   212   213   214   215   216   217   218