Page 229 - A First Course In Stochastic Models
P. 229

222                    MARKOV CHAINS AND QUEUES

                that simultaneously n 1 customers are present at station 1, n 2 customers at station
                2, . . . , n K customers at station K. Define the customer-average probability

                  π j (n 1 , . . . , n K ) = the long-run fraction of arrivals at station j that see
                                  n ℓ other customers present at station ℓ for ℓ = 1, . . . , K.
                Note that in this definition n 1 + · · · + n K = M − 1.

                                                                      K
                Theorem 5.6.3 (arrival theorem)  For any (n 1 , . . . , n K ) with  ℓ=1  n ℓ = M −1,
                                 π j (n 1 , . . . , n K ) = p M−1 (n 1 , . . . , n K ).
                Proof  By part (b) of Corollary 4.3.2,

                   the long-run average number of arrivals per time unit at station j that find
                   n ℓ other customers present at station ℓ for ℓ = 1, . . . , K

                          K

                        =    µ i p ij p M (n 1 , . . . , n i + 1, . . . , n K )
                          i=1
                for any (n 1 , . . . , n K ) with    K  n ℓ = M − 1. In particular,
                                        ℓ=1
                       the long-run average number of arrivals per time unit at station j
                                    K

                            =          µ i p ij p M (m 1 , . . . , m i + 1, . . . , m K )
                              m∈I M−1 i=1
                where m = (m 1 , . . . , m K ) and I M−1 = {m | m ≥ 0 and m 1 +. . .+m K = M −1}.
                Thus
                                          K

                                            µ i p ij p M (n 1 , . . . , n i + 1, . . . , n K )
                                         i=1
                      π j (n 1 , . . . , n K ) =                            .
                                            K

                                              µ i p ij p M (m 1 , . . . , m i + 1, . . . , m K )
                                     m∈I M−1 i=1
                By Theorem 5.6.2,
                                                                    m k
                                                            K
                                                        π i     π k
                           p M (m 1 , . . . , m i + 1, . . . , m K ) =  C  .
                                                        µ i     µ k
                                                            k=1
                Substituting this in the numerator and the denominator of the expression for
                π j (n 1 , . . . , n K ) and cancelling out the common term    K  π i p ij , we find
                                                              i=1
                                                       K 	   
 n k
                                                           π k

                                 π j (n 1 , . . . , n K ) = C M−1  .
                                                           µ k
                                                      k=1
                for some constant C M−1 . The desired result now follows from Theorem 5.6.2.
   224   225   226   227   228   229   230   231   232   233   234