Page 224 - A First Course In Stochastic Models
P. 224

QUEUEING NETWORKS                        217

                we get for the process {X(t)} the equilibrium equations
                      k                           K

                 p(n)    r j + p(n)   µ j =        p(n + e i − e j )µ i p ij + p(n − e j )r j
                     j=1         j:n j >0  j:n j >0  i=1
                                             K

                                           +    p(n + e j )µ j p j0 .
                                             j=1
                These equations are certainly satisfied by

                                                            n k
                                           K
                                                   λ k   λ k

                                    p(n) =     1 −                           (5.6.4)
                                                   µ k   µ k
                                           k=1
                when this product-form solution satisfies the partial balance equations
                         K       K

                     p(n)   r j =  p(n + e j )µ j p j0 ,                     (5.6.5)
                         j=1    j=1
                                 K

                       p(n)µ j =   p(n + e i − e j )µ i p ij + p(n − e j )r j ,  1 ≤ j ≤ K. (5.6.6)
                                i=1
                For the product-form solution (5.6.4) we have

                                 	   
 	   
 −1                     	   
 −1
                                   λ i  λ j                          λ j
                   p(n + e i − e j ) =        p(n)  and p(n − e j ) =      p(n).
                                   µ i  µ j                          µ j
                                                                             (5.6.7)
                After substitution of (5.6.7) in (5.6.6), it remains to verify whether the relation
                                                 −1        	   
 −1


                                    K
                                        λ i   λ j           λ j

                               µ j =                µ i p ij +    r j        (5.6.8)
                                        µ i   µ j           µ j
                                    i=1
                holds for each j = 1, . . . , K. This is indeed true since the relation (5.6.8) coincides
                with the traffic equation (5.6.1) after cancelling out common terms (verify). In a
                similar way we can verify that (5.6.5) holds. Substituting p(n+e j ) = (λ j /µ j )p(n)
                into (5.6.5), we get
                                          K       K

                                             r j =  λ j p j0 .
                                         j=1     j=1
                This relation is indeed true since it states that the rate of new customers enter-
                ing the system equals the rate of customers leaving the system. This completes
                the proof.
   219   220   221   222   223   224   225   226   227   228   229