Page 74 - [B._MURPHY,_C._MURPHY,_B._HATHAWAY]_A_working_meth
P. 74

58                                                  Chapter 5
       Solution:

          1. Acid/base reaction.
          2.  (CH3)3N-weak  base; HCl-strong  acid.
          3.  Acid/base reaction: (CH3)3N + HCl  --$ (CH3)3NH'  + C1-.
          4.  Amount of (CH3)3N (expressed in moles)  = (15  x  0.35)/1000
             = 5.25  x     amount of HC1 (in moles)  = (15 x  0.25)/1000
             = 3.75  10-3.
          5.       (CH3)3N    +  HC1   4  (CH3)3NH'+  C1-

            Initial  5.25 x     3.75 x     0             0
             End   (5.25 - 3.75) x
                   = 1.5 x 10-3  o         3.75  10-3    3.75 x 10-3

          6. Molarity  of  (CH3)3N  =  [amount of  (CH3)3N (in  moles)  x
             1000]/total volume (in cm3)]. The total volume is now (15 + 15)
            cm3 = 30 cm3. Therefore, the molarity of  (CH3)3N = (1.5  x
                 x  1000)/30  = 0.05 M. Molarity of (CH3)3NHf = (3.75 x
                 x  1000)/30 = 0.125 M.
          7.  [(CH3)3NH']   = 0.125 M  >  [(CH3)3Nl  = 0.05 M. Therefore,
            cation hydrolysis occurs!
          8. (CH3)3NH'  + H20 * (CH3)3N + H30+.
             This is the equilibrium reaction,
             where Kh  = ([(CH3)3~[H3o'l}/[(CH3)3NH'l.
          9.         (CH3)3NHf  +  H20  +  (CH3)3N  +  H30f
             Initial   0.125                   0.05         0
             Change  -x                        +X            +X
             Final   (0.125 - x)               (0.05 + x)   x
         10. Kh  =  ([(CH3)3~[H30'l}/[(CH,),NH  '1   =  ((Omo5   +  x>(x)>/
             (0.12%~).
         11. K,  = Kb Kh   Kh  = KW/& = 10-14/(7.4 X  w5) = 1.351 X
             10-l0.
         12. Assume x <<  0.05 + (0.05 x)/0.125  =  1.351 x  1O-Io, i.e. x  =
             3.378 x  lo-''  M.
             Therefore, (3.378  x  10-1°)/(0.05)%  = 6.8  x   % and also,
             (3.378  x  10-1°)/(0.125)%  =  2.7  x   %. Both  are  <5%,
             hence the assumption made was justified.
         13. [H30']  = x  = 3.378 x lo-''  M.
             pH  = -log1o[H3Of]  = -10g10(3.378  x  lo-'')   = 9.47.
                             Answer:pH  = 9.47
   69   70   71   72   73   74   75   76   77   78   79