Page 166 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 166

162   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                               m 1r 2 M  2                                rz 1e ˙μ
                             ≤     z + z 1rQ(Z 1 ) + g 1 (x 1 )rz 1z 2 + g 1 (x 1 )z 1rα 1 −
                                    1
                               2c 11                                        μ
                                 r ˜ |z 1 |  T
                                  θ 1
                                                          ˜ ˆ
                               −    2    (Z 1 )  1 (Z 1 ) + σ 12rθ 1 θ 1 − r˜ε 1 |z 1 | + σ 13r˜ε 1 ˆε 1
                                        1
                                  2η
                                    1

                                                       m 1 e  à 1m
                                 c 11        2  z 1              2
                               +     1 − 2tanh                  k (x 1 ) −  V d1   (10.18)
                                                                 1j
                                  2             ω 1     j=1 1 −¯τ 1
                                              c 11  2 z 1    m 1 e  à 1m 1  2
                        where Q(Z 1 ) = f 1 (x 1 ) +  tanh (  )   k (x 1 ) −¨y d is an unknown
                                              z 1 r  ω 1  j=1 1−¯τ 1  1j
                                                        4
                        function with Z 1 =[x 1 ,z 1 , ˙y d ,r]∈ R . According to Lemma 9.1, Q(Z 1 ) is
                        well defined everywhere including the point z 1 = 0, thus it can be approx-
                        imated by using HONN without the singularity problem encountered in
                        [11–13].
                           Applying Young’s inequality, one can obtain the following inequalities:
                                                              ∗
                                                            rθ |z 1 |  T
                                           ∗T
                                                              1
                            z 1rQ(Z 1 ) =z 1rW    1 (Z 1 ) + z 1rε 1 ≤    (Z 1 )  1 (Z 1 )
                                           1                    2   1
                                                              2η 1
                                           η
                                            2                                      (10.19)
                                      + r   1  + ε 1N |z 1 |
                                           2
                                                      σ 12r M θ ˜ 2  σ 12r M θ 1 ∗2
                                                           1
                                              ˜ ˆ
                                           σ 12rθ 1 θ 1 ≤−   +                     (10.20)
                                                        2         2
                                                      σ 13r M ˜ε 2 1  σ 13r M ε ∗2
                                                                     1
                                           σ 13r˜ε 1 ˆε 1 ≤−  +                    (10.21)
                                                        2         2
                                                        z 2
                                                                2
                                                                  2
                                           g 1 (x 1 )rz 1z 2 ≤  1  + c 12r g z 2   (10.22)
                                                                M 11 2
                                                       4c 12
                        where θ = W   ∗T  W is a positive scalar, ε 1N is the upper bound of NN
                                          ∗
                                ∗
                                1    1    1
                        approximation error, i.e., |ε 1 | ≤ ε 1N .
                           Moreover, it can be verified from (10.13)–(10.16)that g 1 (x 1 )rz 1 α 1 =
                        g 1 (x 1 )rN(ξ 1 )ξ 1 and ˆ (t), ˆε 1 (t) ≥ 0,t ≥ 0 hold for any initial conditions
                                   ˙
                                          θ 1
                         ˆ
                        θ 1 (0), ˆε 1 (0) ≥ 0and0 ≤  ab  ≤ a,∀a,b > 0. Then one can rewrite (10.18)
                                              a+b
                        as
                                m 1r 2 M  2  z 2 1  2  2  2
                                                                     ˙
                            ˙ V 1 ≤  z +      + c 12r g z + g 1 (x 1 )rN(ξ 1 )ξ 1
                                                  M 11 2
                                      1
                                 2c 11    4c 12
                                           ˆ
                                   rz 1e ˙μ  rθ 1 |z 1 |  T
                                 −      +         (Z 1 )  1 (Z 1 )
                                                  1
                                    μ       2η 2
                                              1
                                           σ 12r M θ ˜ 2  σ 12r M θ 1 ∗2  σ 13r M ˜ε 1 2  σ 13r M ε 1 ∗2
                                                 1
                                 + rˆε 1 |z 1 | −  +         −        +
                                              2         2         2        2

                                                        m 1 e  à 1m
                                   c 11        2  z 1             2
                                 +     1 − 2tanh (  )            k (x 1 ) −  V d1
                                                                  1j
                                   2             ω 1     j=1 1 −¯τ 1
   161   162   163   164   165   166   167   168   169   170   171