Page 168 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 168

164   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                           Select a Lyapunov-Krasovskii function as

                                        m i
                                1  2  c i1     e  à im i     t  − (t−ς) 2  1  2   1   2
                                                                             ˜
                           V i = z +                  e      k (¯x i (ς))dς +  θ +   ˜ ε i
                                                                             i
                                                              ij
                                  i
                                2     2    1 −¯ i  t−τ ij (t)            2  i    2  ai
                                               τ
                                        j=1
                                                                                   (10.29)
                        where c i1 > 0and  > 0 are design parameters.
                           Similar to Step 1, taking the time derivative of V i along (10.24)–(10.28)
                        yields
                                                                    ˜
                              m i  2                                θ i |z i |  T
                          ˙ V i ≤  z + z iQ(Z i ) + g i (¯x i )z iz i+1 + g i (¯x i )z i α i −    (Z i )  i (Z i )
                                  i                                    2  i
                              2c i1                                 2η i
                                  ˜ ˆ
                              + σ i2 θ i θ i −Èε i |z i | + σ i3 ˜ε i ˆε i −  V di
                                                   m i
                                                        à im
                                c i1        2  z i     e    2
                              +     1 − 2tanh (  )         k (¯x i )               (10.30)
                                                            ij
                                2             ω i     1 −¯ i
                                                         τ
                                                  j=1
                                             c i1  2 z i    m i  e  à im 2
                        where Q(Z i ) = f i (¯x i ) +  tanh ( )  k (¯x i ) −¨α i−1 with Z i =[¯x i ,z i ,
                                                                ij
                                             z i    ω i  j=1 1−¯τ i
                        ∂α i−1 /∂x 1 ,··· ,∂α i−1 /∂x i−1 ,φ i−1 ]∈ R 2i+1  is an unknown function approx-
                        imated by HONN. As stated in [11], [19], it should be emphasized that
                                i−1 ∂α i−1                 ∂α i−1 ˙  ∂α i−1           ˆ
                                                                              i−1 ∂α i−1 ˙
                         ˙ α i−1 =     ˙ x k + φ i−1 with φ i−1 =  ξ i−1 +  ˙ y d +  θ k +
                                k=1 ∂x k                   ∂ξ i−1    ∂y d     k=1 ∂ ˆ θ k

                          i−1 ∂α i−1 ˙                                                 ˆ
                                 ˆ ε k is a computable function of ¯x i−1 ,y d ,ξ i−1 , ˆε 1 ,··· , ˆε i−1 ,θ 1 ,
                          k=1 ∂ ˆε k
                        ··· ,θ i−1.
                            ˆ
                           The following inequalities also hold
                                                        ∗                    2
                                                       θ |z i |  T          η i
                                                        1
                                       ∗T
                          z iQ(Z i ) = z iW    i (Z i ) + z i ε i ≤    (Z i )  i (Z i ) +  + ε  |z i |
                                       i                  2  i                   iN
                                                        2η i                2
                                                                                   (10.31)
                                                       σ i2 θ ˜ 2  σ i2 θ i ∗2
                                                          i
                                                 ˜ ˆ
                                              σ i2 θ i θ i ≤−  +                   (10.32)
                                                         2      2
                                                       σ i3 ˜ε i 2  σ i3 ε ∗2
                                                                 i
                                              σ i3 ˜ε i ˆε i ≤−  +                 (10.33)
                                                         2      2
                                                         z 2 i  2  2
                                            g i (¯x i )z iz i+1 ≤  + c i2g z       (10.34)
                                                                i1 i+1
                                                        4c i2
                        Substituting (10.31)–(10.34)into(10.30) and following similar analysis as
                        in Step 1, we have
   163   164   165   166   167   168   169   170   171   172   173