Page 172 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 172

168   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                        on 
, and then consider the Lyapunov function as
                                               "
                                        1        2                      − (t−ς) 2
                                n          n             m i e  à im     t
                         V =       V i =        z + c i1               e      k (¯x i (ς))dς
                                                 i
                                                                               ij
                                 i=1    2   i=1          j=1 1 −¯τ i  t−τ ij (t)
                                                    #
                                          1  2  1  2
                                       +   θ ˜ +   ˜ ε                             (10.48)
                                            i      i
                                           i      ai
                        Recalling the previous design procedure from Step 1 to Step n,itcanbe
                        obtained
                                     m 1r M  1     2    n−1      m i    1        2     2
                                        2
                          ˙ V ≤− k 1 −    −      z −         k i −  −     − c i−1,2g  z
                                                   1                             i−1,1  i
                                      2c 11  4c 12       i=2     2c i1  4c i2

                                     m n        2      2
                             − k n −     − c n−1,2g                       ˙
                                                       n
                                                n−1,1  z + r[g 1 (x 1 )N(ξ 1 ) + 1]ξ 1
                                     2c n1
                                 n−1                                       n   σ i2 θ ˜ 2
                                                   ˙
                                                                     ˙
                             +       [g i (x)N(ξ i ) + 1]ξ i +[g n (x)dN(ξ n ) + 1]ξ n −  i
                                  i=2                                       i=1  2
                                     σ i3 ˜ε i           σ i2 θ i  σ i3 ε i
                                 n      2      n            ∗2      ∗2
                             −            + α       σ i1 +    +
                                  i=1 2         i=1        2     2g i0
                                     $                      m i e       %
                                 n                              à im            n
                                      c i1        2  z i            2
                             +            1 − 2tanh (  )           k (¯x i ) −     V di
                                                                    ij
                                  i=1  2            ω i    j=1 1 −¯τ i           i=1
                                          n
                                                              ˙
                           ≤− γV + ϑ +        α[G i (x)N(ξ i ) + 1]ξ i
                                           i=1
                                     $                      m i e       %
                                 n                              à im
                                      c i1        2  z i            2
                             +            1 − 2tanh (  )           k (¯x i )       (10.49)
                                                                    ij
                                  i=1  2            ω i    j=1 1 −¯τ i
                                       $
                                                  2
                        with   γ = min 2 k 1 − m 1r /2c 11 − 1/4c 12 ,2(k i − m i /2c i1 − 1/4c i2 −
                                                 M

                        c i−1,2g 2  ),i = 1,··· ,n − 1,2 k n − m n /2c n1 − c n−1,2g 2    ,  i σ i2 ,  ai σ i3 ,i =
                             i−1,1                                    n−1,1
                                   %
                                                              i
                                             n        σ i2 θ i ∗2  σ i3 ε  ∗2
                        1,··· ,n,  , ϑ = α   i=1  σ i1 +  2  +  2g i0  . If the control parameters
                        fulfill (10.47), the variables γ and ϑ are all positive. Moreover, consider the
                                     2
                        fact 1 − 2tanh (z i /ω i ) ≤ 1 and the functions k ij (¯x i ) are bounded on any


                        compact set 
, the last term of (10.49) is bounded by a positive constant
                        M i ≥ 0, which can be described as

                                                        m i e  à im
                                                2  z i            2
                                        1 − 2tanh (  )                             (10.50)
                                                                 k (¯x i ) ≤ M i
                                                                  ij

                                                  ω i
                                                         j=1 1 −¯τ i
                                                         γt
                        Multiplying both sides of (10.50)by e yields
                              γt
                          d(Ve )          n c i1M i     γt    n                γt
                                                                              ˙
                                 ≤ ϑ +              e +       α[G i (x)N(ξ i ) + 1]ξ ie  (10.51)
                             dt            i=1 2           i=1
   167   168   169   170   171   172   173   174   175   176   177