Page 170 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 170

166   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                           Choose the Lyapunov function as
                                         m n
                                1     c n1     à nmn     t                1       1
                                            e
                                                                             2
                                  2
                                                            k (¯x(ς))dς +
                           V n = z +                  e − (t−ς) 2 nj        θ ˜ +    ˜ ε n 2
                                  n
                                                                             n
                                2     2     1 −¯ n                       2  n    2  an
                                               τ
                                         j=1      t−τ nj
                                                                                   (10.41)
                                                                        2
                        where c n1 > 0and ˜ε n = ε − ε n with ε = ε nN + g n1p + η /2 being the upper
                                             ∗
                                                        ∗
                                                                        n
                                                        n
                                             n
                        bounds of NN and dead-zone error, and g n1 > 0and p ≥ |ρ(t)| are the upper
                        bounds of g n (·) and the dead-zone slope, respectively. The time derivative
                        of V n along (10.36)–(10.41) can be derived as
                                                                          1        1
                                                                              ˙
                                                                                       ˙
                                                                            ˜ ˜
                          ˙ V n ≤z n f n (x) + g n (x)(dv + ρ) + h n (t,x(t − τ n )) −¨α n−1 +  θ n θ n +  ˜ ε n ˜ε n
                                                                            n       an

                                c n1    m n  e  à nm  2  2
                              +                k (x(t)) − k (x(t − τ nj )) −  V dn
                                                         nj
                                                nj
                                2    j=1 1 −¯τ n
                              m n  2
                            ≤    z + g n (x)z ndv + z nQ(Z n ) + g n1p|z n |
                                  n
                              2c n1
                                                     m n e  à nm

                                c n1        2  z n             2
                              +     1 − 2tanh (  )            k (x) −  V dn
                                                               nj
                                2             ω n     j=1 1 −¯τ n
                                ˜
                                θ n |z n |  T
                                                       ˜ ˆ
                              −        (Z n )  n (Z n ) + σ n2 θ n θ n −Èε n |z n | + σ n3 ˜ε n ˆε n  (10.42)
                                      n
                                 2η n 2
                                                         m n e  à nmn  2
                                             c n1  2 z n
                        where Q(Z n ) = f n (x) +  tanh (  )     k (x) −¨α n−1 is an unknown
                                                                  nj
                                             z n    ω n  j=1 1−¯τ n
                        function approximated by a HONN with Z n =[x,z n ,∂α n−1 /∂x 1 ,··· ,
                        ∂α n−1 /∂x n−1 ,φ n−1 ]∈ R 2n+1 .
                           The following inequalities can be verified
                                               ∗                     2
                                              θ |z n |  T           η n
                                               n
                           z nQ(Z n ) + g n1p|z n | ≤    (Z n )  n (Z n ) + (  + ε nN + g n1p)|z n |,
                                                     n
                                               2η 2                 2
                                                 n
                                                                                   (10.43)
                                                       σ n2 θ ˜ 2  σ n2 θ n ∗2
                                                          n
                                                ˜ ˆ
                                             σ n2 θ n θ n ≤−  +     ,              (10.44)
                                                         2      2
                                                       σ n3 ˜ε n 2  σ n3 ε ∗2
                                                                  n
                                             σ n3 ˜ε n ˆε n ≤−  +   .              (10.45)
                                                         2      2
                        Moreover, from (10.37)–(10.38), we have g n (x)dz nv = g n (x)dN(ξ n )ξ n,then
                                                                                  ˙
                        it follows
                                                                                    ˜ 2
                                        m n   2                       ˆ ε n |z n |σ n1  σ n2 θ n
                                                                ˙
                            ˙ V n ≤− k n −   z +[g n (x)dN(ξ n ) + 1]ξ n +     −
                                              n
                                        2c n1                        ˆ ε n |z n |+ σ n1  2
                                  σ n2 θ n ∗2  σ n3 ˜ε 2 n  σ n3 ε ∗2
                                                     n
                                +       −      +       −  V dn
                                    2       2       2
   165   166   167   168   169   170   171   172   173   174   175