Page 169 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 169

APPC of Strict-Feedback Systems With Non-linear Dead-Zone  165


                                         m i   1    2     2  2                      ˆ ε i |z i |σ i1
                                                                               ˙
                             ˙ V i ≤− k i −  −     z + c i2g z  +[g i (¯x i )N(ξ i ) + 1]ξ i +
                                                    i     i1 i+1
                                         2c i1  4c i2                              ˆ ε i |z i |+ σ i1
                                   σ i2 θ ˜ 2 1  σ i2 θ i ∗2  σ i3 ˜ε 2 i  σ i3 ε ∗2
                                                            i
                                 −      +       −      +       −  V di
                                     2      2       2      2
                                                         m i e  à im
                                   c i1        2  z i            2
                                 +     1 − 2tanh (  )           k (¯x i )
                                                                 ij
                                    2            ω i    j=1 1 −¯τ i
                                                2
                               ≤− γ iV i + ϑ i + c i2g z 2  +[g i (¯x i )N(ξ i ) + 1]ξ i
                                                                     ˙
                                                i1 i+1

                                                        m i e  à im
                                   c i1        2  z i            2
                                 +     1 − 2tanh (  )           k ((¯x i )            (10.35)
                                                                 ij
                                    2            ω i    j=1 1 −¯τ i

                            where γ i and ϑ i are positive constants given as γ i = min 2(k i − m i /2c i1 −
                                                               ∗2       ∗2
                            1/4c i2 ),  i σ i2 ,  ai σ i3 ,  , ϑ i = σ i1 + σ i2 θ /2 + σ i3 ε /2. The last term of
                                                              i         i
                            (10.35) is bounded as k ij (¯x i ) is bounded on compact set C i and −1 ≤
                                                                 2
                                    2
                            1 − 2tanh (z i /ω i ) ≤ 1 holds. The term c i2g z 2  is bounded provided z i+1
                                                                 i1 i+1
                            is bounded. Then for small ϑ i, c i1, c i2,orlarge γ i,the errors z i , ˜ , ˜ε i are
                                                                                     θ i
                            bounded. These analyses and claims can be conducted for each subsystem i
                            (2 ≤ i < n).
                            Step n. This is the last step to determine the real control v. Consider
                            z n = x n − α n−1,wehave

                              ˙ z n =˙x n −¨α n−1 = f n (x) + g n (x) d(t)v(t) + ρ(t) + h n (t,x(t − τ n (t))) −¨α n−1
                                                                                      (10.36)
                            where ˙α n−1 can be represented as a function of x,∂α n−1 /∂x 1 ,··· ,∂α n−1 /
                                                                         ∂α n−1 ˙   ∂α n−1
                            ∂x n−1 ,φ n−1 as stated in [11], where φ n−1 =   ξ n−1 +    ˙ y d +
                                                                         ∂ξ n−1      ∂y d
                              n−1 ∂α n−1 ˙ ˆ    n−1 ∂α n−1 ˙ ˆ ε k is computable.
                              k=1    θ k +  k=1  ∂ ˆε k
                                  ∂ ˆ θ k
                               Then the real control is proposed as
                                                                           2
                                                ˆ
                                                θ nsgn(z n )  T            ˆ ε z n
                                                                           n
                                v = N(ξ n ) k nz n +      (Z n )  n (Z n ) +          (10.37)
                                                          n
                                                  2η 2 n                ˆ ε n |z n |+ σ n1
                                                                        2 2
                                               ˆ
                                               θ n |z n |  T           ˆ ε z
                                                                        n n
                                            2
                                     ˙
                                     ξ n = k nz +     (Z n )  n (Z n ) +              (10.38)
                                            n
                                                      n
                                                2η 2                ˆ ε n |z n |+ σ n1
                                                  n

                                                    |z n |
                                             ˙           T                ˆ
                                            θ n          (Z n )  n (Z n ) − σ n2 θ n  (10.39)
                                             ˆ =   n
                                                         n
                                                    2η 2
                                                      n
                                                   ˙
                                                   ˆ ε n =   an |z n | − σ n3 ˆε n    (10.40)
                            where   n > 0,   an > 0, k n > 0,η n > 0and σ n1 ,σ n2 ,σ n3 > 0 are design pa-
                            rameters.
   164   165   166   167   168   169   170   171   172   173   174