Page 55 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 55

46   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


                                                                              −1
                        The error transform with PPF can be expressed as s 2 = μ 2R (z 2 ).Then
                                                                             2
                        substituting (3.27)into(3.26)yields
                                                  −1
                                                                      ˙ μ 1
                                        ˙ z 1 = r 1 μ 2R (z 2 ) +¯χ 1 − ϑ 2,1 − s 1  .  (3.28)
                                                  2
                                                                      μ 1
                        Hence, the virtual control ¯χ 1 to stabilize (3.28)isgiven by
                                                      r 1z 1 μ 2    ˙ μ 1
                                                  ¯        2
                                      ¯ χ 1 =−k 1z 1 − δ 1      + s 1  + ϑ 2,1 ,    (3.29)
                                                   |r 1z 1 μ 2 |+   1  μ 1
                        where k 1 > 0, δ 1 > 0, and   1 > 0 are the design parameters.
                                     ¯
                           Step 2: In order to avoid the use of derivative of ¯χ 1,welet ¯χ 1 go through
                        aHGTDas


                                      ˙
                                      ϑ 1,2 = ϑ 2,2                                 (3.30)
                                                             α
                                      ϑ 2,2 = H 2     − ρ 1,2 [ϑ 1,2 −¯χ 1 ] − ρ 2,2 [ϑ 2,2 /H] β
                                      ˙
                        where ρ 1,2 and ρ 2,2 are also the design parameters. The derivative of z 2 is
                        given as
                                                   ˙ μ 2             ˙ μ 2
                                                      	      ˙
                                                                 ˙
                                        ˙ z 2 = r 2 ˙ s 2 −  s 2 = r 2 ˆ x 2 − ¯χ 1 −  s 2  (3.31)
                                                  μ 2                μ 2
                        where r 2 = (1/2μ 2 )[1/(ρ 2 + δ ) − 1/(ρ 2 − δ 2 )],and ρ 2 = s 2 /μ 2.
                                                             ¯
                                                  2
                           Based on the system (3.3)withobserver(3.20), the derivative of (3.31)
                        is
                                                                   ˙ μ 2
                                          ˙ z 2 = r 2 k f (x 3 − x 1 ) − ϑ 2,2 −  s 2  (3.32)
                                                                  μ 2
                        By defining s 3 = x 3 −¯χ 2 as another intermediate error, one obtains
                                                   x 3 = s 3 +¯χ 2 .                (3.33)

                        Substituting (3.33)into(3.32)yields

                                                 −1
                                                                         ˙ μ 2
                                     ˙ z 2 = r 2 k f (μ 3R (z 3 ) +¯χ 2 − x 1 ) − ϑ 2,2 −  (3.34)
                                                 3                         s 2
                                                                        μ 2
                        Choose the virtual control ¯χ 2 as
                                                                    r 2z 2 μ 2
                                   1                ˙ μ 2  	             3
                                                                ¯
                               ¯ χ 2 =  − k 2z 2 + ϑ 2,2 +  s 2 +ˆ x 1 − δ 2  ,     (3.35)
                                   k f              μ 2          |r 2z 2 μ 3 |+   2
                        where k 2 > 0, δ 2 > 0, and   2 > 0 are the design parameters.
                                     ¯
   50   51   52   53   54   55   56   57   58   59   60