Page 56 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 56

Adaptive Dynamic Surface Control of Two-Inertia Systems With LuGre Friction Model  47


                               Step 3: In the final step, the controller u will be obtained based on the
                            error variable
                                                       s 3 = x 3 −¯χ 2 .               (3.36)

                            Thetimederivativeof z 3 is obtained by

                                                     ˙ μ 3              ˙ μ 3

                                                                   ˙
                                          ˙ z 3 = r 3 ˙ s 3 −  s 3 = r 3 x 3 − ¯χ 2 −  s 3
                                                     μ 3               μ 3             (3.37)
                                                    1     1     1
                                                                          ˙ μ 3
                                                                      ˙
                                            = r 3 −   ˆ x 2 +  u −  F − ¯χ 2 −  s 3
                                                   J m    J m  J m        μ 3
                            where r 3 = (1/2μ 3 )[1/(ρ 3 + δ ) − 1/(ρ 3 − δ 3 )],and ρ 3 = s 3 /μ 3.
                                                                 ¯
                                                     3
                               Again, let ¯χ 2 go through the following HGTD

                                          ˙
                                         ϑ 1,3 = ϑ 2,3                                 (3.38)
                                                                 α
                                         ϑ 2,3 = H 2     − ρ 1,3 [ϑ 1,3 −¯χ 2 ] − ρ 2,3 [ϑ 2,3 /H] β
                                          ˙
                            where ρ 1,3 and ρ 2,3 are the design parameters.
                               Then substituting (3.38)into(3.37), we have
                                                  1    1      1           ˙ μ 3
                                           ˙ z 3 = r 3  u −  ˆ x 2 −  F − ϑ 2,3 −  s 3  (3.39)
                                                 J m   J m    J m        μ 3

                            Finally, the control signal u is chosen to be

                                                                ˙ μ 3

                                            u = J m − k 3z 3 + ϑ 2,3 +  s 3 +ˆ x 2 + ˆ F  (3.40)
                                                                μ 3
                            where k 3 > 0 is a design parameter, and ˆ F is the estimation of unknown
                            dynamics F, which will be designed in the following subsection.

                            3.3.3 Friction Compensation With ESN

                            To compensate for the effect of ˆ F including friction T f ,anESNwill be
                            used. Specifically, to address the friction dynamics, we define   = z − z 0
                            and z 0 = g(ω)sgn(ω) [33], such that:

                                        F = T f − J l ˙ω l = σ 0z + σ 1 ˙z + σ 2 ω m − J l ˙ω l
                                          = σ 2 ω m + f c + (f s − f c )e −(ω m /ω s ) 2   sgn(ω m )

                                                                                       (3.41)
                                                             1

                                            + σ 0   1 −              2  |ω m | − J l ˙ω l .
                                                     f c + (f s − f c )e −(ω m /ω s )
   51   52   53   54   55   56   57   58   59   60   61