Page 58 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 58

Adaptive Dynamic Surface Control of Two-Inertia Systems With LuGre Friction Model  49


                            3.3.4 Stability Analysis
                            In this section, the stability of the closed-loop system is proved by using
                            Lyapunov stability theory. The main results can be summarized in the fol-
                            lowing theorem.

                            Theorem 3.1. Consider the two-inertia system (3.1), the controller (3.49)with
                            (3.29), (3.35), and friction compensation (3.48), adaptive laws (3.45)and (3.47)
                            are used, then all signals in the closed-loop system are semi-globally uniformly ulti-
                            mately bounded (SGUUB). Moreover, the tracking error s 1 can be guaranteed within
                            the bound specified by the selected PPF μ 1 (t).
                            Proof. Consider the Lyapunov function as

                                                   3
                                                1     2  1  T  −1    1  −1  2
                                                           ˜
                                                                          ˜
                                                                 ˜
                                            V =      z +       +     .                 (3.50)

                                                                           1
                                                      i
                                                2        2           2    1
                                                  i=1
                            Taking the time derivative of V based on (3.29), (3.35), (3.49), (3.45), and
                            (3.47), we can have
                                  3
                                           T  −1 ˙     −1 ˙
                             ˙ V =   z    ˜     ˜   ˜     ˜
                                    z i ˙ i +       +   1     1
                                                         1
                                 i=1
                                         −1                                 −1
                                                            ˙ μ 1
                               = r 1z 1 μ 2R (z 2 ) +¯χ 1 − ϑ 2,1 − s 1  + r 2z 2 k f (μ 3R (z 3 )
                                         2                                  3
                                                            μ 1
                                                              1    1      1
                                                  ˙ μ 2                               ˙ μ 3
                                 +¯χ 2 − x 1 ) − ϑ 2,2 −  s 2 − r 3z 3  u −  ˆ x 2 −  F − ϑ 2,3 −  s 3
                                                  μ 2        J m   J m    J m        μ 3
                                    1         1
                                                  T ˙
                                       T ˙
                                                    ˆ
                                      ˜
                                         ˆ
                                                 ˜
                                 −        −         1
                                                  1
                                                 1
                                                              r 1z 1 μ 2
                                                 −1      ¯        2

                               = r 1z 1 − k 1z 1 + μ 2R (z 2 ) − δ 1
                                                 2
                                                           |r 1z 1 μ 2 |+   1
                                                                r 2z 2 μ 2
                                                   −1                3          2

                                                           ¯
                                 + r 2z 2 − k 2z 2 + μ 3R (z 3 ) − δ 2    + r 3k 3z 3
                                                   3
                                                             |r 2z 2 μ 3 |+   2
                                                        1   	                1

                                   ˜  T                    ˙ ˆ  ˜  T            ˙ ˆ
                                 −   r 3z 3X(x)sgn(ω m ) −    −   r 3z 3 |ω m |−    1  (3.51)
                                                                 1
                                                                                1
                               Using the Young’s inequality, one can have
                                                              T
                                                    T
                                                                ˜
                                                             ˜
                                                     ˆ
                                                  ˜
                                                  1     ≤−    1      +    1    2       (3.52)
                                                           2        2
                                                            2  T      2  2
                                                  ˜ ˆ
                                                             ˜
                                                                ˜
                                                 2   1   1 ≤−      1 +    .            (3.53)
                                                                        1
                                                              1
                                                           2         2
   53   54   55   56   57   58   59   60   61   62   63