Page 51 - Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics
P. 51

42   Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


















                        Figure 3.3 Profile of prescribed performance function.


                        where −δ and δ i are design parameters. An example of PPF and error
                                 i
                        constraint (3.13)isshownin Fig. 3.3.
                           From (3.12)and (3.13), one can see that −δ μ i0 defines the lower bound
                                                                 i
                        of the undershoot and δ i μ i0 defines the upper bound of the maximum
                        overshoot. The decreasing rate κ i denotes the required convergence speed
                        of tracking error [22]. Hence, the transient and steady-state performance
                        can be designed in a priori by tuning the parameters −δ , δ i , κ i , μ i0,and
                                                                          i
                        μ i∞. To design control with prescribed performance, an error transform is
                        used to transform the original tracking error system with the constrained
                        tracking error bound (3.13) into an equivalent “unconstrained” one [29].
                        With this purpose, we define a smooth, strictly increasing function S i (z i )
                        of the transformed error z i, which fulfills the following properties:
                        1) −δ < S i (z i )< δ i , ∀z i ∈ L ∞.
                                         ¯
                              i
                        2)   lim S i (z i ) = δ i ,and lim S i (z i ) =−δ .
                                                              i
                            z i →+∞            z i →−
                        Based on these properties of S i (z i ),Eq. (3.13) equals
                                                 e i (t) = μ i (t)S i (z i ).       (3.14)

                        Then, the transformed error z i can be calculated by


                                                          e i (t)
                                                      −1
                                                 z i = S        .                   (3.15)
                                                      i
                                                          μ i (t)
                           For any initial condition e i (0), if parameters μ i (0), δ i,and δ are selected
                                                                              i
                        that −δ μ i (0)< e i (0)< δ i μ i (0) and z i can be controlled to be bounded, then
                               i
                        −δ < S i (z i )< δ i holds, such that the condition −δ μ i (t)< e i (t)< δ i μ i (t) is
                           i                                         i
                        guaranteed. In this chapter, the following function is used in the control
   46   47   48   49   50   51   52   53   54   55   56