Page 764 - Advanced_Engineering_Mathematics o'neil
P. 764

744    CHAPTER 22  Singularities and the Residue Theorem

                                                           2π
                                    In summary, to evaluate  K(cos(θ),sin(θ)dθ, begin by computing the function
                                                         0
                                                               1      1   1      1    1

                                                      f (z) = K   z +   ,     z −      .                (22.5)
                                                               2      z   2i     z   iz
                                 Then
                                                   	  2π

                                                       K(cos(θ), sin(θ))dθ = 2πi  Res( f, z j )         (22.6)
                                                    0
                                                                              |z j |<1
                                 with this sum over all singularities z j of f (z) enclosed by the unit circle.


                         EXAMPLE 22.19

                                 Evaluate
                                                               	  2π   2
                                                                    sin (θ)
                                                                            dθ.
                                                                   2 + cos(θ)
                                                                0
                                               2
                                 Here K(x, y) = y /(2 + x), and
                                                                              2
                                                                            sin (θ)
                                                          K(cos(θ),sin(θ)) =       .
                                                                           2 + cos(θ)
                                 Let x = cos(θ) = (z + 1/z)/2, and y = sin(θ) = (z − 1/z)/2i in K(x, y), and multiply by 1/iz to
                                 produce the complex function of equation (22.5):

                                                                      2          4   2
                                                          [(z − 1/z)/2i]  1  i  z − 2z + 1
                                                   f (z) =                 =               .
                                                                               2
                                                          2 + (z + 1/z)/2  iz  2 z (z + 4z + 1)
                                                                                  2
                                                                                                  √
                                                                            2
                                 f has a double pole at 0 and simple poles at zeros of z + 4z + 1, which are −2 ±  3. Only the
                                             √
                                 poles 0 and 2 −  3 are enclosed by γ . By equation (22.6),
                                                	  2π  2                                 √
                                                     sin (θ)
                                                            dθ = 2πi[Res( f,0) + Res( f,−2 +  3)].
                                                    2 + cos(θ)
                                                 0
                                 Compute these residues:
                                                                               4
                                                                                    2
                                                            d              d i z − 2z + 1
                                                                2
                                               Res( f,0) = lim  (z f (z)) = lim
                                                                                2
                                                         z→0 dz         z→0 dz 2 z + 4z + 1
                                                                           3
                                                                               2
                                                                      4
                                                                 5
                                                         i       z + 6z + 2z − 4z − 3z − 2
                                                       =   lim 2                         =−2i
                                                                        2
                                                         2 z→0        (z + 4z + 1) 2
                                 and
                                                                         4
                                                                              2
                                                         √     i        z − 2z + 1
                                              Res( f,−2 +  3) =
                                                               2 2z(z + 4z + 1) + z (2z + 4)  z=−2+ 3
                                                                                 2
                                                                     2
                                                                                              √
                                                                       √
                                                               i 42 − 24 3
                                                             =         √ .
                                                               2 −12 + 7 3
                                 Therefore,
                                                                             √              √
                                               sin (θ)               i 42 − 24 3     90 − 52 3
                                         	  2π   2
                                                      dθ = 2πi −2i +         √    =        √    π.
                                             2 + cos(θ)              2 −12 + 7 3
                                          0                                           12 − 7 3
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  15:37  THM/NEIL   Page-744        27410_22_ch22_p729-750
   759   760   761   762   763   764   765   766   767   768   769