Page 764 - Advanced_Engineering_Mathematics o'neil
P. 764
744 CHAPTER 22 Singularities and the Residue Theorem
2π
In summary, to evaluate K(cos(θ),sin(θ)dθ, begin by computing the function
0
1 1 1 1 1
f (z) = K z + , z − . (22.5)
2 z 2i z iz
Then
2π
K(cos(θ), sin(θ))dθ = 2πi Res( f, z j ) (22.6)
0
|z j |<1
with this sum over all singularities z j of f (z) enclosed by the unit circle.
EXAMPLE 22.19
Evaluate
2π 2
sin (θ)
dθ.
2 + cos(θ)
0
2
Here K(x, y) = y /(2 + x), and
2
sin (θ)
K(cos(θ),sin(θ)) = .
2 + cos(θ)
Let x = cos(θ) = (z + 1/z)/2, and y = sin(θ) = (z − 1/z)/2i in K(x, y), and multiply by 1/iz to
produce the complex function of equation (22.5):
2 4 2
[(z − 1/z)/2i] 1 i z − 2z + 1
f (z) = = .
2
2 + (z + 1/z)/2 iz 2 z (z + 4z + 1)
2
√
2
f has a double pole at 0 and simple poles at zeros of z + 4z + 1, which are −2 ± 3. Only the
√
poles 0 and 2 − 3 are enclosed by γ . By equation (22.6),
2π 2 √
sin (θ)
dθ = 2πi[Res( f,0) + Res( f,−2 + 3)].
2 + cos(θ)
0
Compute these residues:
4
2
d d i z − 2z + 1
2
Res( f,0) = lim (z f (z)) = lim
2
z→0 dz z→0 dz 2 z + 4z + 1
3
2
4
5
i z + 6z + 2z − 4z − 3z − 2
= lim 2 =−2i
2
2 z→0 (z + 4z + 1) 2
and
4
2
√ i z − 2z + 1
Res( f,−2 + 3) =
2 2z(z + 4z + 1) + z (2z + 4) z=−2+ 3
2
2
√
√
i 42 − 24 3
= √ .
2 −12 + 7 3
Therefore,
√ √
sin (θ) i 42 − 24 3 90 − 52 3
2π 2
dθ = 2πi −2i + √ = √ π.
2 + cos(θ) 2 −12 + 7 3
0 12 − 7 3
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 15:37 THM/NEIL Page-744 27410_22_ch22_p729-750

