Page 765 - Advanced_Engineering_Mathematics o'neil
P. 765
22.3 Evaluation of Real Integrals 745
EXAMPLE 22.20
We will evaluate
2π
1
dθ
α + β cos(θ)
0
in which 0 <β <α.
Replace cos(θ) = (z + 1/z)/2, and use equation (22.5) to produce the function
1 1 −2i
f (z) = = .
2
α + (β/2)(z + 1/z) iz βz + 2αz + β
f has simple poles at
√
2
−α ± α − β 2
z = .
β
Since α> β, these numbers are real. Only one of them,
√
2
−α + α − β 2
z 1 = ,
β
is enclosed by γ . Therefore,
1
2π
dθ = 2πiRes( f, z 1 )
α + β cos(θ)
0
−2i 2π
= 2πi = √ .
2βz 1 + 2α α − β 2
2
SECTION 22.3 PROBLEMS
In each of Problems 1 through 10, evaluate the integral. 9. ∞ x 2 dx
2
Wherever they appear, α and β are positive numbers. −∞ (x + 4) 2
cos(βx)
∞
10. dx
1 −∞ 2 2 2
2π (x + α )
1. dθ
0 2 − cos(θ)
In Problems 11 through 18, α and β are positive numbers
1
∞ wherever they occur.
2. dx
x + 1
−∞ 4
∞ cos(αx)
−α
1 11. Show that dx = πe .
3. ∞ dx −∞ x + 1
2
6
−∞ x + 1
2
∞ x cos(αx) π
−αβ
2π 1 12. Show that −∞ 2 2 2 dx = e (1 − αβ).
4. dθ (x + β ) 2β
0
6 + sin(θ)
2π 1
13. Let α =β. Show that dθ =
∞ x sin(2x) 0 2
2
2
2
α cos (θ) + β sin (θ)
5. dx
4
−∞ x + 16 2π
.
1 αβ
∞
6. dx
−∞ x − 2x + 6 π/2 1 π
2
14. Show that 0 2 dθ = √ .
2
∞ cos (x) α + sin (θ) 2 α(1 + α)
7. dx √
−∞ 2 2 π
(x + 4) ∞ −x 2 −β 2
15. Show that e cos(2βx)dx = e .
0 2
2sin(θ)
2π −z 2
8. dθ Hint:Integrate e about the rectangular path having
0 2
2 + sin (θ) corners at ±R and ±R + βi. Use Cauchy’s theorem
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 15:37 THM/NEIL Page-745 27410_22_ch22_p729-750

