Page 765 - Advanced_Engineering_Mathematics o'neil
P. 765

22.3 Evaluation of Real Integrals  745




                                 EXAMPLE 22.20
                                        We will evaluate
                                                                      	  2π
                                                                              1
                                                                                    dθ
                                                                          α + β cos(θ)
                                                                       0
                                        in which 0 <β <α.
                                           Replace cos(θ) = (z + 1/z)/2, and use equation (22.5) to produce the function
                                                                        1        1       −2i
                                                           f (z) =                 =             .
                                                                                       2
                                                                 α + (β/2)(z + 1/z) iz  βz + 2αz + β
                                        f has simple poles at
                                                                              √
                                                                                 2
                                                                         −α ±   α − β 2
                                                                      z =             .
                                                                               β
                                        Since α> β, these numbers are real. Only one of them,
                                                                              √
                                                                                 2
                                                                         −α +   α − β  2
                                                                     z 1 =            ,
                                                                               β
                                        is enclosed by γ . Therefore,
                                                                 1
                                                        	  2π
                                                                       dθ = 2πiRes( f, z 1 )
                                                            α + β cos(θ)
                                                         0
                                                                                 −2i        2π
                                                                         = 2πi         = √       .
                                                                              2βz 1 + 2α   α − β 2
                                                                                            2
                               SECTION 22.3        PROBLEMS



                            In each of Problems 1 through 10, evaluate the integral.  9.     ∞  x  2  dx
                                                                                  2
                            Wherever they appear, α and β are positive numbers.  −∞  (x + 4) 2
                                                                                 cos(βx)
                                                                                ∞
                                                                          10.           dx
                                     1                                        −∞  2   2 2
                                 2π                                             (x + α )
                            1.           dθ
                               0  2 − cos(θ)
                                                                           In Problems 11 through 18, α and β are positive numbers
                                    1
                                 ∞                                         wherever they occur.
                            2.         dx
                                  x + 1
                               −∞  4
                                                                                       ∞ cos(αx)

                                                                                                     −α
                                    1                                      11. Show that       dx = πe .
                            3.  ∞      dx                                             −∞  x + 1
                                                                                          2

                                   6
                               −∞  x + 1
                                                                                          2
                                                                                       ∞ x cos(αx)    π
                                                                                                        −αβ
                                 2π  1                                     12. Show that  −∞  2  2 2  dx =  e  (1 − αβ).
                            4.           dθ                                              (x + β )    2β
                               0
                                 6 + sin(θ)
                                                                                                2π      1
                                                                           13. Let α  =β. Show that              dθ =
                               ∞ x sin(2x)                                                    0              2
                                                                                                    2
                                                                                                 2
                                                                                                          2
                                                                                                α cos (θ) + β sin (θ)
                            5.           dx
                                   4
                               −∞  x + 16                                     2π
                                                                                .
                                     1                                        αβ
                                 ∞
                            6.             dx
                               −∞  x − 2x + 6                                           π/2  1            π
                                   2
                                                                           14. Show that  0   2   dθ = √       .
                                     2
                               ∞ cos (x)                                                 α + sin (θ)  2 α(1 + α)

                            7.           dx                                                            √
                               −∞  2    2                                                               π
                                  (x + 4)                                               ∞  −x 2           −β 2
                                                                           15. Show that  e  cos(2βx)dx =  e  .
                                                                                      0                 2
                                   2sin(θ)
                                 2π                                                       −z 2
                            8.            dθ                                  Hint:Integrate e  about the rectangular path having
                               0      2
                                 2 + sin (θ)                                  corners at ±R and ±R + βi. Use Cauchy’s theorem
                      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
                      Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
                                   October 14, 2010  15:37  THM/NEIL   Page-745        27410_22_ch22_p729-750
   760   761   762   763   764   765   766   767   768   769   770