Page 770 - Advanced_Engineering_Mathematics o'neil
P. 770
750 CHAPTER 22 Singularities and the Residue Theorem
Now use the facts that
I (z) = iJ (iz)
0 0
and
J (z) =−J 1 (z) = J 1 (−z)
0
to obtain
Res(g(z)/h(z), j n )
−2R J 0 ( j n r/R) 2 2
= e − j n t/R .
J 1 ( j n )
j n
The solution is therefore
∞
2
−2R J 0 ( j n r/R) − j n t/R 2
u(r,t) = T 0 1 − 2 e .
j n J 1 ( j n )
n=1
SECTION 22.4 PROBLEMS
1
In each of Problems 1 through 10, use Theorem 22.7 to 5.
find the inverse Laplace transform of the function. (z + 5) 3
1
6.
z + 8
3
z 1
1. 7.
4
2
z + 9 z + 1
1 1
2. 8. z
(z + 3) 2 e (z − 1)
1 z 2
3. 9.
(z − 2) (z + 4) (z − 2) 3
2
1 z + 3
4. 10.
3
2
(z + 9)(z − 2) 2 (z − 1)(z + 2)
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
October 14, 2010 15:37 THM/NEIL Page-750 27410_22_ch22_p729-750

