Page 240 - Advanced Linear Algebra
P. 240

224    Advanced Linear Algebra




                                               ) )
                                          ))#~#
                                           V
               for all #=  .
            13.  Prove that an orthonormal set   is a Hilbert basis for a finite-dimensional
                                        E
               vector space   if and only if Parseval's identity holds for all  Á  #  $    =  , that
                          =
               is, if and only if
                                      º#Á $» ~ ´#µ h ´$µ V E  V  E
               for all #Á $  =  .
            14.  Let " ~ ²  ÁÃÁ  ³  and # ~ ²  Á ÃÁ  ³  be in s   . The Cauchy–Schwarz




               inequality states that




                        (              (    bÄb           ²  bÄb  ³²  b Äb  ³




               Prove that we can do better:





                        (
                                   (
                       ²     b Äb     ³  ²  bÄb  ³²  b Äb  ³
                            (
                                        (




            15.  Let   be a finite-dimensional inner product space. Prove that for any subset
                   =
               ?    = of  , we have  ?  žž  ~  ² span  ?  ³  .
            16.  Let F 3  be the inner product space of all polynomials of degree at most 3,
               under the inner product
                                              B
                               º ²%³Á  ²%³» ~     ²%³ ²%³  c%   %
                                             cB


               Apply  the  Gram–Schmidt  process to the basis  ¸ Á %Á %Á %¹ , thereby
               computing  the  first  four  Hermite polynomials   at least up to a
                                                            (
                                  )
               multiplicative constant .
            17.  Verify uniqueness in the Riesz representation theorem.
            18.  Let   be a complex inner product space and let    be  a  subspace  of  .
                                                                          =
                                                         :
                   =
               Suppose that  #  =   is a vector for which  º#Á  » b º Á #»  º Á  »  for  all
                                   ž
                :. Prove that  # : .
            19.  If  =   and  >   are inner product spaces, consider the function on  =  ^  >
               defined by
                             º²# Á $ ³Á ²# Á $ ³» ~ º# Á # » b º$ Á $ »








               Is this an inner product on  =  > ^  ?
                                                                (
            20.  A  normed vector space  over   or   is a vector space  over   or  d  )
                                                                     s
                                               d
                                          s
               together with a function ))¢= ¦ s  for which for all "Á#  =   and scalars
               we have
               a )  )) ~  ( () )

                             #
                     #
               b )  )    )"b#   )  )  )" b # )
               c   ))#~    if and only if # ~
                )
                                          (
               If  =    is  a  real  normed space  over  s )  and if the norm satisfies the
               parallelogram law
   235   236   237   238   239   240   241   242   243   244   245