Page 245 - Advanced Linear Algebra
P. 245

Structure Theory for Normal Operators  229



            then

                         º Á ² ³O ²!³» ~ º Á   i  :  i  !» ~ º  Á !» ~ º O ² ³Á !»


                                                          :
                                        i

            Hence, by definition of adjoint, ²³O ~ ² O ³ i  .…

                                          :
                                                :
            Now let us relate the kernel and image of a linear transformation to those of its
            adjoint.
                               B
                                             =
            Theorem 10.3 Let  ²= Á > ³ , where   and >   are finite-dimensional inner

            product spaces.
            1)
                            ker²³ ~ im ² ³ ž      im ²³ ~  ker² ³ ž
                                 i
                                                       and
                                                      i



                and so
                                             ¯     surjective  i  injective
                                             ¯     injective  i  surjective
            2)
                           ker ²  i  ³    ~  ker ³    and  ker ²  i  ³    ~  ker   i  ³
                                        ²
                                                              ²
            3)
                            im ²  i  ³    ~  im   i  ³  and  im ²  i  ³    ~  im ³
                                                             ²
                                        ²
            4)
                                       ²    ³   i  ~ :Á;     ;Á:  ž
                                                  ž
            Proof. For part 1),
                                " ker ² ³ ¯      i  i  " ~
                                              i

                                          ¯ º "Á = » ~ ¸ ¹
                                          ¯ º"Á = » ~ ¸ ¹

                                          ¯" im  ² ³ ž

            and so ker²³ ~ im ² ³ ž  . The second equation in part 1) follows by replacing
                      i


                i
            by   and taking complements.

            For part 2), it is clear that ker²³ ‹  ker²       i  ³ . For the reverse inclusion, we have

                                 i
                 i
                  " ~     ¬    º   "Á "» ~    ¬     º "Á   "» ~    ¬   " ~
            and so  ker ²  i  ³    ‹  ker ³    . The second equation follows  from  the  first  by
                               ²
                           i
            replacing   with  . We leave the rest of the proof for the reader.…
   240   241   242   243   244   245   246   247   248   249   250