Page 244 - Advanced Linear Algebra
P. 244

228    Advanced Linear Algebra



            Specifically, for each $>  , the linear functional   =  i  defined by
                                                      $
                                       # ~ º #Á $»

                                       $
            has the form
                                       # ~ º#Á 9 »

                                       $
                                                 $
            where  9      =   is the Riesz vector for  $ $     . If  ¢  i  >  ¦  =   is defined by
                                     i
                                      $~9     $    $ ~9²  ³
            where   is the Riesz map, then
                 9

                             º#Á    i $» ~ º#Á 9 » ~   # ~ º #Á $»

                                                 $ $
                         i
                                                                9
            Finally, since   ~9 k    is the composition of the Riesz map   and the map
             ¢ $ ª   $  and since both of these maps are conjugate linear, their composition
            is linear.…
            Here are some of the basic properties of the adjoint.
                            =
            Theorem 10.2 Let   and >   be finite-dimensional inner product spaces. For
            every   Á  B²= Á > ³  and    -  ,


            1) ²b ³ ~   i  i  b    i
                   i

            2) ²  ³ ~      i
            3      )  ii  ~      and so
                                        i
                                      º#Á $» ~ º#Á $»


                                     i
                                i
             )
            4 If =~ >   , then ²   ³ ~     i
             )
                                     ³
                                            ³
            5   If   is invertible, then       ²  c  i  ~  ²     i c
                                              i
             )
                                                     i
            6   If =~ >  and  ²%³  ´%µ , then  ² ³ ~  ² ³ .


                                  s
                          B
            Moreover, if  ²= ³  and   is a subspace of  , then
                                  :

                                                  =
                                             i

            7   :  )   is  -invariant if and only if  :  ž   is  -invariant.

             )
                    ž
                                          :


            8   ²:Á : ³  reduces   if and only if   is both  -invariant and     i  -invariant, in
               which case

                                        ²O³ ~ ² ³O :  i    :  i
            Proof. For part 7), let  :  and ' : ž  and write
                                       i

                                     º'Á  » ~ º'Á  »

            Now, if   is  -invariant, then  º  i  '  Á     »  ~      for all        :   and so     i  '    :  ž   and

                   :
            :  ž  i  -invariant. Conversely, if   :  is    ž  i  -invariant, then   º  '  Á        »  ~     is     for all
            ' :  and so    ž     : ž  ž  ~ :, whence  : is  -invariant.
            The first statement in part 8) follows from part 7) applied to both   and  :  ž . For
                                                                 :
            the second statement, since   is both  -invariant and      i -invariant, if    Á  !    , :
                                   :
   239   240   241   242   243   244   245   246   247   248   249