Page 401 - Advanced Linear Algebra
P. 401

Tensor Products   385





            Theorem 14.13  Let  =Á Ã Á =       and  >  be vector spaces over  - .  Then  the
            mediating morphism map
                                               B¢ hom
                               ²= Á Ã Á =Â > ³ ¦ ²= n Ä n =Á > ³




            defined by the fact that        is the  unique mediating morphism for   is  an

            isomorphism. Thus,
                                             B
                          hom²= ÁÃÁ= Â> ³ š ²= n Ä n = Á> ³




            Moreover, if all vector spaces are finite-dimensional, then

                        dim hom =  ²  Á  à  Á    =    >  ³    µ  ~  dim >  ²  ³  h    dim =  ²     ³  …
                           ´
                                                         ~
            Theorem 14.8 and its corollary can also be extended.
            Theorem 14.14 The linear transformation
                         Z
                                                                      Z
                                         Z
                                                             Z
                  B²< Á < ³ n Ä n  B²<Á <³ ¦  B²< n Ä n <Á < n Ä n <³
                  ¢








            defined by


                        ²

                          n Än      ³²" nÄn" ³ ~     " n Än        "
            is  an  embedding and is an isomorphism if all vector spaces are finite-
                                                      nÄn   of linear transformations is
            dimensional. Thus, the tensor product
            (via this embedding ) a linear transformation on tensor products. Two important
            special cases of this are
                                           —
                                         i
                               i
                              < n Än< Æ      ²< nÄn< ³    i




            where
                        ²  nÄn  ³²" nÄn" ³ ~   ²" ³Ä  ²" ³








            and
                                           —
                                     i
                            i
                          <n Ä n <n = ÆB       ²< n Ä n < Á = ³




            where
                      ²  nÄn  n#³²" n Än" ³ ~   ²" ³Ä  ²" ³#              …








            Tensor Spaces
            Let   be a finite-dimensional vector space. For nonnegative integers   and  ,

               =

            the tensor product
   396   397   398   399   400   401   402   403   404   405   406