Page 406 - Advanced Linear Algebra
P. 406

390    Advanced Linear Algebra





                                tr²# n  ³ ~  ²#³ ~ ²# n  ³

            where   is the contraction map.…
            The Tensor Algebra of =

            Consider the contravariant tensor spaces


                                  ;²= ³ ~ ;²= ³ ~ =  n


            For  ~    we take ; ²= ³ ~ - . The external direct sum
                                            B

                                    ;²= ³ ~    ; ²= ³
                                             ~
            of these tensor spaces is a vector space with the property that


                                 ; ²=³ n ; ²=³ ~ ;    b     ²=³

            This is an example of a graded algebra , where ;²= ³  are the elements of grade
                                                                     (
                               ;.   ²The  graded algebra   =  ³   is called the    over  = tensor algebra  .  We will
            formally define graded structures a bit later in the chapter.)
            Since


                                                         i
                                       i
                              ; ²= ³ ~ = nÄn=    i  ~ ; ²= ³
                                     ’••••“••••”

                                           factors
            there is no need to look separately at ;²= ³ .

            Special Multilinear Maps
            The following definitions describe some special types of multilinear maps.
            Definition
             )
            1   A  multilinear map   ¢ =  d   ¦ >   is  symmetric  if interchanging any two
               coordinate positions changes nothing, that is, if
                       ²# Á ÃÁ# ÁÃÁ# ÁÃÁ# ³ ~  ²# ÁÃÁ# ÁÃÁ# ÁÃÁ# ³








               for any  £  .
             )
            2   A multilinear map  ¢ =  d   ¦ >   is antisymmetric  or skew-symmetric  if
               interchanging any two coordinate positions introduces a factor of c  , that
               is, if
                       ²# Á ÃÁ# ÁÃÁ# ÁÃÁ# ³ ~ c ²# ÁÃÁ# ÁÃÁ# ÁÃÁ# ³








               for  £  .
   401   402   403   404   405   406   407   408   409   410   411