Page 403 - Advanced Linear Algebra
P. 403

Tensor Products   387



            More specifically, consider a tensor of type ² Á  ³ , written

                   # n Än# nÄn# n  nÄn  nÄn   ; ²= ³







            where    and     . Here we are choosing the first    vectors and the first
              linear functionals as active participants. This determines  the  number  of
            arguments of the map. In fact, we define a map from the cartesian product
                                          i
                                 i
                               ’••••“••••” d = dÄd=
                               = d Äd=
                                              ’•••“•••”
                                                   factors   factors
            to the tensor product
                                               i
                                = n Än=
                               ’•••“•••” n = nÄn=       i
                                             ’••••“••••”
                                  c  factors     c  factors
            of the remaining factors by
              ²# n Ä n # n   n Ä n   ³²  ÁÃÁ  Á% ÁÃÁ% ³








                 ~   ²# ³Ä  ²# ³  ²% ³Ä  ²% ³#  b                         n Än# n   b   nÄn

                                            of (active) vectors interacts with the first
            In words, the first group #n Ä n #




            group   Á à Á         of arguments to produce the scalar   ²# ³Ä  ²# ³ . The first
                             of (active) functionals interacts with the second group
            group   n Ä n
                     of arguments to produce the scalar    ²%³Ä  ²% ³. The remaining
            %Á Ã Á %
                                                                      are just
            (passive) vectors  #  b   n Än#     and functionals     b   nÄn
            “copied” to the image tensor.
            It is easy to see that this map is multilinear and so there is a unique linear map
            from the tensor product
                                 i
                                          i
                               = n Än=
                               ’••••“••••” n = nÄn=
                                              ’•••“•••”
                                                   factors   factors
            to the tensor product
                                               i
                                             ’••••“••••”
                                = n Än=
                               ’•••“•••” n = nÄn=       i
                                  c  factors     c  factors
            defined by
              ²# p Äp# p  pÄp  ³²  nÄn  n% nÄn% ³









                 ~   ²# ³Ä  ²# ³  ²% ³Ä  ²% ³#  b                         n Än# n   b   nÄn
            Moreover, the map
                                                               i n² c ³
                                        i n
                             i n
                                   B¢ =
                      n   n ²= ³  ¦ ²²= ³   n =  n  Á =  n² c ³  n ²= ³  ³
            defined by




                   ²# nÄn# n  nÄn  ³ ~ # p Äp# p  pÄp
   398   399   400   401   402   403   404   405   406   407   408