Page 404 - Advanced Linear Algebra
P. 404
388 Advanced Linear Algebra
is the zero map then
is an isomorphism, since if # p Äp# p pÄp
²# ³Ä ²# ³ ²% ³Ä ²% ³# b n Än# n b nÄn ~
for all = i and % = , which implies that
# n Än# n nÄn ~
by
As usual, we denote the map # p Äp# p pÄp
# n Än# n nÄn
Theorem 11.15 For and ,
i n² c ³
i n
;²= ³ B²²= ³ n = n Á = n² c ³ n ²= ³ ³
When ~ and ~ , we get
i n
i n
³
;²= ³ B²²= ³ n = n Á -³ ~ ²²= ³ n = n i
as before.
Let us look at some special cases. For ~ we have
in n² c ³
;²= ³ B²²= ³ Á = ³
where
²# n Än# ³² nÄn ³ ~ ²# ³Ä ²# ³# b n Än#
When ~ ~ , we get for ~ and ~ ,
;²= ³ B B²- n= Á = n-³ ²= ³
where
²# n ³²$³ ~ ²$³#
and for ~ and ~ ,
i
i
;²= ³ B i i B²= n-Á - n= ³ ²= Á = ³
where
²# n ³² ³ ~ ²#³
Finally, when ~ ~ , we get a multilinear form
²# n ³² Á $³ ~ ²#³ ²$³
Consider also a tensor n of type ² Á ³ . When ~ ~ we get a
multilinear functional n ¢ ²= d = ³ ¦ - defined by