Page 404 - Advanced Linear Algebra
P. 404

388    Advanced Linear Algebra



                                                          is the zero map then


            is an isomorphism, since if # p Äp# p  pÄp


                 ²# ³Ä  ²# ³  ²% ³Ä  ²% ³#  b   n Än# n   b   nÄn  ~








            for all   =  i  and %  =  , which implies that


                               # n Än# n  nÄn  ~




                                                            by


            As usual, we denote the map # p Äp# p  pÄp
                                # n Än# n  nÄn


            Theorem 11.15 For        and      ,
                                                          i n² c ³
                                   i n

                       ;²= ³ š B²²= ³   n =  n  Á =  n² c ³  n ²= ³  ³     …

            When  ~     and   ~  , we get
                                    i n
                                                      i n

                                                                ³
                       ;²= ³ š B²²= ³   n =  n  Á -³ ~ ²²= ³  n =  n  i

            as before.
            Let us look at some special cases. For  ~    we have
                                            in     n² c ³
                               ;²= ³ š B²²= ³   Á =     ³

            where
                 ²# n Än# ³²  nÄn  ³ ~         ²# ³Ä  ²# ³#           b       n Än#




            When  ~   ~   , we get for   ~    and   ~   ,
                             ;²= ³ š B                 B²- n= Á = n-³ š ²= ³
            where
                                    ²# n  ³²$³ ~  ²$³#
            and for  ~   and   ~  ,
                                                             i
                                                         i
                          ;²= ³ š B       i      i    B²= n-Á - n= ³ š ²= Á = ³
            where
                                    ²# n  ³² ³ ~  ²#³
            Finally, when  ~ ~   , we get a multilinear form
                                 ²# n  ³² Á $³ ~  ²#³ ²$³
            Consider also a tensor    n    of type  ² Á  ³ . When    ~   ~    we  get  a
            multilinear functional  n  ¢ ²= d = ³ ¦ -   defined by
   399   400   401   402   403   404   405   406   407   408   409