Page 500 - Advanced Linear Algebra
P. 500
484 Advanced Linear Algebra
)
1 A sequence ²%³ is the associated sequence for ²!³ if and only if
²%³ ~ º ²!³ % »%
~ [
)
2 A sequence ²%³ is Sheffer for ² ²!³Á ²!³³ if and only if
c
²%³ ~ º ² ²!³³ ²!³ %»%
~ [
)
Proof. We need only prove part 2 . We know that ²%³ is Sheffer for
² ²!³Á ²!³³ if and only if
& ²!³ B ² & ³
~ !
² ²!³³ ~ !
But this is equivalent to
& ²!³ B ² & ³
N % O ~ L ! c % M ~ ² & ³
² ²!³³ !
~
Expanding the exponential on the left gives
B º ² ²!³³ ²!³ % » B ²&³
c
&~ L ! % M ~ ²&³
c
[ !
~ ~
%
&
Replacing by gives the result.
Sheffer sequences can also be characterized by means of linear operators.
Theorem 19.12 Operator characterization)
²
)
1 A sequence ²%³ is the associated sequence for ²!³ if and only if
)
a ² ³ ~ Á
)
b ²!³ ²%³ ~ c ²%³ for
)
2 A sequence ²%³ is Sheffer for ² ²!³Á ²!³³ for some invertible series ²!³ if
and only if
²!³ ²%³ ~ c ²%³
for all .
)
Proof. For part 1 , if ²%³ is associated with ²!³ , then
!
² ³ ~ º ²%³» ~ º ²!³ ²%³» ~ [ Á
and

