Page 500 - Advanced Linear Algebra
P. 500

484    Advanced Linear Algebra



             )
            1   A sequence  ²%³  is the associated sequence for  ²!³  if and only if




                                   ²%³ ~      º ²!³ “ % »%

                                          ~    [
             )
            2   A sequence   ²%³  is Sheffer for ² ²!³Á  ²!³³  if and only if


                                                 c


                               ²%³ ~      º ² ²!³³  ²!³ “ %»%

                                      ~    [
                                           )
            Proof.  We  need only prove part 2 . We know that   ²%³  is Sheffer for

            ² ²!³Á  ²!³³ if and only if
                                        & ²!³  B       ²  &  ³
                                            ~         !
                                  ² ²!³³       ~    !
            But this is equivalent to
                                & ²!³        B       ²  &  ³
                       N             %  O  ~  L “   !  c   %  M  ~     ²  &  ³
                          ² ²!³³                  !
                                              ~
            Expanding the exponential on the left gives
                     B  º ² ²!³³  ²!³ “ % »     B      ²&³
                               c




                                          &~  L        ! %    M  ~      ²&³
                                                         c
                                 [                   !
                      ~                         ~
                        %
                    &
            Replacing   by   gives the result.…
            Sheffer sequences can also be characterized by means of linear operators.
            Theorem 19.12  Operator characterization)
                         ²
             )
            1   A sequence  ²%³  is the associated sequence for  ²!³  if and only if

                )
               a  ² ³ ~       Á

                )

               b  ²!³  ²%³ ~       c     ²%³  for   ‚
             )
            2   A sequence   ²%³  is Sheffer for ² ²!³Á  ²!³³  for some invertible series  ²!³  if

               and only if
                                      ²!³  ²%³ ~         c     ²%³
               for all  ‚  .
                          )
            Proof. For part 1 , if  ²%³  is associated with  ²!³ , then

                                  !
                          ² ³ ~ º  “  ²%³» ~ º ²!³ “  ²%³» ~  [          Á


            and
   495   496   497   498   499   500   501   502   503   504   505