Page 501 - Advanced Linear Algebra
P. 501

The Umbral Calculus   485





                           º ²!³ “  ²!³  ²%³» ~ º ²!³    b     “   ²%³»



                                            ~ [  Á b

                                            ~  ²  c  ³[  c Á

                                            ~  º ²!³ “    c  ²%³»
                                                )
                                                                       )
                                                                )
            and since this holds for all  ‚    we get 1b . Conversely, if 1a  and 1b  hold,
            then



                              º ²!³ “   ²%³» ~ º! “  ²!³   ²%³»


                                           ~² ³     ² ³
                                                 c

                                           ~² ³   c Á

                                           ~ [  Á
            and so  ²%³  is the associated sequence for  ²!³ .

                      )
            As for part 2 , if   ²%³  is Sheffer for ² ²!³Á  ²!³³ , then


                        º ²!³ ²!³ “  ²!³  ²%³» ~ º ²!³ ²!³    b     “   ²%³»



                                            ~ [  Á b

                                            ~  ²  c  ³[  c Á

                                            ~  º ²!³ ²!³ “    c  ²%³»
            and so  ²!³  ²%³ ~       c     ²%³ , as desired. Conversely, suppose that

                                    ²!³  ²%³ ~         c     ²%³
                                                        ;
            and let  ²%³  be the associated sequence for  ²!³ . Let   be the invertible linear

            operator on   defined by
                     =
                                     ;  ²%³ ~   ²%³


            Then

                 ; ²!³  ²%³ ~  ;       c     ²%³ ~       c     ²%³ ~  ²!³  ²%³ ~  ²!³;  ²%³

            and so Lemma 19.5 implies that ; ~  ²!³  for some invertible series  ²!³ . Then


                           º ²!³ ²!³ “   ²%³» ~ º ²!³ “  ²!³  ²%³»




                                           ~º! “  ²!³   ²%³»

                                           ~² ³      ² ³
                                                  c

                                           ~² ³   c Á

                                           ~ [  Á
            and so   ²%³  is Sheffer for ² ²!³Á  ²!³³ .…

            We next give a formula for the action of a linear operator  ²!³  on a Sheffer
            sequence.
   496   497   498   499   500   501   502   503   504   505   506