Page 501 - Advanced Linear Algebra
P. 501
The Umbral Calculus 485
º ²!³ ²!³ ²%³» ~ º ²!³ b ²%³»
~ [ Á b
~ ² c ³[ c Á
~ º ²!³ c ²%³»
)
)
)
and since this holds for all we get 1b . Conversely, if 1a and 1b hold,
then
º ²!³ ²%³» ~ º! ²!³ ²%³»
~² ³ ² ³
c
~² ³ c Á
~ [ Á
and so ²%³ is the associated sequence for ²!³ .
)
As for part 2 , if ²%³ is Sheffer for ² ²!³Á ²!³³ , then
º ²!³ ²!³ ²!³ ²%³» ~ º ²!³ ²!³ b ²%³»
~ [ Á b
~ ² c ³[ c Á
~ º ²!³ ²!³ c ²%³»
and so ²!³ ²%³ ~ c ²%³ , as desired. Conversely, suppose that
²!³ ²%³ ~ c ²%³
;
and let ²%³ be the associated sequence for ²!³ . Let be the invertible linear
operator on defined by
=
; ²%³ ~ ²%³
Then
; ²!³ ²%³ ~ ; c ²%³ ~ c ²%³ ~ ²!³ ²%³ ~ ²!³; ²%³
and so Lemma 19.5 implies that ; ~ ²!³ for some invertible series ²!³ . Then
º ²!³ ²!³ ²%³» ~ º ²!³ ²!³ ²%³»
~º! ²!³ ²%³»
~² ³ ² ³
c
~² ³ c Á
~ [ Á
and so ²%³ is Sheffer for ² ²!³Á ²!³³ .
We next give a formula for the action of a linear operator ²!³ on a Sheffer
sequence.

