Page 503 - Advanced Linear Algebra
P. 503

The Umbral Calculus   487




                            ² ³ ~  ² ³ ² ³ b  ² ³ ² ³ ~   ² ³






            and so   ² ³ ~   . Assuming that   ² ³ ~    for   ~  Á Ã Á   c    we have


                            ² ³ ~   ² ³  ² ³ b   ² ³  ² ³ ~    ² ³






            and so   ² ³ ~   . Thus,   ² ³ ~      Á  .


            Next, define a linear functional  ²!³  by
                                    º ²!³ “   ²%³» ~      Á

            Since  º ²!³ “  » ~ º ²!³ “   ²%³» ~     and  º ²!³ “   ²%³» ~   £    we deduce


            that  ²!³  is a delta series. Now, the binomial identity gives

                              &!
                        º ²!³ “     ²%³» ~  45    ²&³º ²!³ “         c     ²%³»

                                         ~

                                      ~           45     ²  &  ³     c       Á

                                         ~
                                      ~    c  ²&³
            and so
                               &!               &!

                             º  “  ²!³  ²%³» ~ º  “       c     ²%³»
                                  &
            and since this holds for all  , we get  ²!³  ²%³ ~         c     ²%³ . Thus,   ²%³  is the

            associated sequence for  ²!³ .
                    )
            For part 2 , if  ²%³  is a Sheffer sequence, then taking  ²!³ ~   &!  in Theorem

            19.13 gives the Sheffer identity. Conversely, suppose that the Sheffer identity
            holds, where  ²%³  is the associated sequence for  ²!³ . It suffices to show that

             ²!³  ²%³ ~   ²%³ for some invertible   ²!³. Define a linear operator   by
                                                                   ;


                                      ;  ²%³ ~   ²%³


            Then
                                          &!
                               &!
                                ;  ²%³ ~     ²%³ ~   ²% b &³



            and by the Sheffer identity,


                  ;    ²%³ ~    &!          ²&³;   c  ²%³ ~  45  45    ²&³   c  ²%³


                               ~                     ~
            and the two are equal by part 1 . Hence,   commutes with     &!  and is therefore
                                      )
                                              ;
            of the form  ²!³ , as desired.…
   498   499   500   501   502   503   504   505   506   507   508