Page 503 - Advanced Linear Algebra
P. 503
The Umbral Calculus 487
² ³ ~ ² ³ ² ³ b ² ³ ² ³ ~ ² ³
and so ² ³ ~ . Assuming that ² ³ ~ for ~ Á Ã Á c we have
² ³ ~ ² ³ ² ³ b ² ³ ² ³ ~ ² ³
and so ² ³ ~ . Thus, ² ³ ~ Á .
Next, define a linear functional ²!³ by
º ²!³ ²%³» ~ Á
Since º ²!³ » ~ º ²!³ ²%³» ~ and º ²!³ ²%³» ~ £ we deduce
that ²!³ is a delta series. Now, the binomial identity gives
&!
º ²!³ ²%³» ~ 45 ²&³º ²!³ c ²%³»
~
~ 45 ² & ³ c Á
~
~ c ²&³
and so
&! &!
º ²!³ ²%³» ~ º c ²%³»
&
and since this holds for all , we get ²!³ ²%³ ~ c ²%³ . Thus, ²%³ is the
associated sequence for ²!³ .
)
For part 2 , if ²%³ is a Sheffer sequence, then taking ²!³ ~ &! in Theorem
19.13 gives the Sheffer identity. Conversely, suppose that the Sheffer identity
holds, where ²%³ is the associated sequence for ²!³ . It suffices to show that
²!³ ²%³ ~ ²%³ for some invertible ²!³. Define a linear operator by
;
; ²%³ ~ ²%³
Then
&!
&!
; ²%³ ~ ²%³ ~ ²% b &³
and by the Sheffer identity,
; ²%³ ~ &! ²&³; c ²%³ ~ 45 45 ²&³ c ²%³
~ ~
and the two are equal by part 1 . Hence, commutes with &! and is therefore
)
;
of the form ²!³ , as desired.

