Page 502 - Advanced Linear Algebra
P. 502

486    Advanced Linear Algebra




            Theorem 19.13 Let   ²%³  be a Sheffer sequence for ² ²!³Á  ²!³³  and let   ²%³


            be associated with  ²!³ . Then for any  ²!³  we have

                           ²!³  ²%³ ~  45   º ²!³ “   ²%³»        c     ²%³

                                      ~
            Proof. By the expansion theorem
                                     B  º ²!³ “   ²%³»

                               ²!³ ~                ²!³  ²!³
                                             !
                                     ~
            we have
                                     B  º ²!³ “   ²%³»

                          ²!³  ²%³ ~         !      ²!³  ²!³  ²%³


                                     ~
                                     B  º ²!³ “   ²%³»
                                  ~                ²       ³    c  ²  %  ³

                                             !
                                     ~
            which is the desired formula.…
            Theorem 19.14
            1  )(The binomial identity )  A sequence  ²%³  is the associated sequence for a

               delta series  ²!³  if and only if it is of binomial type , that is, if and only if it
               satisfies the identity


                                 ²% b &³ ~  45      ²&³        c     ²%³

                                           ~
               for all & d .
            2  )(The Sheffer identity )   A  sequence    ²%³  is Sheffer for  ² ²!³Á  ²!³³  for

               some invertible  ²!³  if and only if

                                 ²% b &³ ~  45      ²&³        c     ²%³

                                           ~
               for all & d , where   ²%³  is the associated sequence for  ²!³ .

                                 )
            Proof.  To  prove part 1 , if   ²%³  is an associated sequence, then taking

             ²!³ ~    in Theorem 19.13 gives the binomial identity. Conversely, suppose
                   &!
            that the sequence   ²%³  is of binomial type. We will use the operator

            characterization  to  show  that   ²%³  is an associated sequence. Taking

            %~& ~   we have for    ~ ,
                                      ² ³ ~   ² ³  ² ³



            and so  ² ³ ~   . Also,
   497   498   499   500   501   502   503   504   505   506   507