Page 823 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 823

84
     806               The reaction rates of toluene and benzene with i-propyl chloride or t-butyl chloride 85
                       in nitromethane can be fit to a third-order rate law.
     CHAPTER 9
     Aromatic Substitution                    Rate = k AlCl   i-PrCl  ArH
                                                         3
                           Rates that are independent of aromatic substrate concentration have been found
                       for reaction of benzyl chloride catalyzed by TiCl or SbF in nitromethane. 86  This
                                                                        5
                                                                4
                       can be interpreted as resulting from rate-determining formation of the electrophile,
                       presumably a benzyl ion pair. The reaction of benzyl chloride and toluene shows
                       a second-order dependence on the titanium chloride concentration under conditions
                       where there is a large excess of hydrocarbon. 87  This is attributed to reaction through
                       a 1:2 benzyl chloride-TiCl complex, with the second TiCl molecule assisting in the
                                             4
                                                                       4
                       ionization reaction:
                                               Rate = k PhCH Cl  TiCl   2
                                                           2
                                                                   4
                           All these kinetic results can be accommodated by a general mechanistic scheme
                       that incorporates the following fundamental components: (1) complexation of the
                       alkylating agent and the Lewis acid; in some systems, there may be an ionization of
                       the complex to yield a discrete carbocation; (2) electrophilic attack on the aromatic
                       reactant to form the cyclohexadienylium ion intermediate; and (3) deprotonation. The
                       formation of carbocations accounts for the fact that rearrangement of the alkyl group
                       is observed frequently during Friedel-Crafts alkylation.

                                                                    –
                                                                  +
                                     (1)  R  X  +  MY n      R   X -M Y n
                                             +
                                                –
                                     (2)  R  X -M Y n    R +  +  [MY X] –
                                                                 n
                                                         +
                                                           –
                                                     R  X -M Y n              R
                                     (3)  Z       +   or             Z   +    H
                                                      R +
                                                 R
                                     (4)  Z  +              Z        R  +  H +
                                                 H
                           Absolute rate data for the Friedel-Craft reactions are difficult to obtain. The
                       reaction is very sensitive to the effects of moisture and heterogeneity. For this reason,
                       most of the structure-reactivity trends have been developed using competitive methods,
                       rather than by direct measurements. Relative rates are established by allowing the
                       electrophile to compete for an excess of the two reactants. The product ratio establishes

                        84   F. P. DeHaan, G. L. Delker, W. D. Covey, J. Ahn, R. L. Cowan, C. H. Fong, G. Y. Kim, A. Kumar,
                          M. P. Roberts, D. M. Schubert, E. M. Stoler, Y. J. Suh, and M. Tang, J. Org. Chem., 51, 1587 (1986).
                        85
                          F. P. DeHaan, W. H. Chan, J. Chang, D. M. Ferrara, and L. A. Wamschel, J. Org. Chem., 51, 1591
                          (1986).
                        86   F. P. DeHaan, G. L. Delker, W. D. Covey, J. Ahn, M. S. Anisman, E. C. Brehm, J. Chang, R. M. Chicz,
                          R. L. Cowan, D. M. Ferrara, C. H. Fong, J. D. Harper, C. D. Irani, J. Y. Kim, R. W. Meinhold,
                          K. D. Miller, M. P. Roberts, E. M. Stoler, Y. J. Suh, M. Tang, and E. L. Williams, J. Am. Chem. Soc.,
                          106, 7038 (1984); F. P. DeHaan, W. H. Chan, J. Chang, T. B. Chang, D. A. Chiriboga, M. M. Irving,
                          C. R. Kaufmann, G. Y. Kim, A. Kumar, J. Na, T. T. Nguyen, D. T. Nguyen, B. R. Patel, N. P. Sarin,
                          and J. H. Tidwell, J. Am. Chem. Soc., 112, 356 (1990).
                        87
                          F. P. DeHaan, W. D. Covey, R. L. Ezelle, J. E. Margetan, S. A. Pace, M. J. Sollenberger, and D. S. Wolfe,
                          J. Org. Chem., 49, 3954 (1984).
   818   819   820   821   822   823   824   825   826   827   828