Page 289 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 289

methylthiomethyl chloride is efficient if catalyzed by iodide ion. 161  Alcohols are also  261
              converted to MTM ethers by reaction with dimethyl sulfoxide in the presence of acetic
              acid and acetic anhydride, 162  or with benzoyl peroxide and dimethyl sulfide. 163  The  SECTION 3.5
              latter two methods involve the generation of the methylthiomethylium ion by ionization  Installation and Removal
                                                                                         of Protective Groups
              of an acyloxysulfonium ion (Pummerer reaction).
                                                  I –
                                –
                              RO M +  +  CH SCH Cl     ROCH SCH 3
                                             2
                                         3
                                                           2
                                               CH CO H
                                                  3
                                                     2
                              ROH + CH SOCH 3             ROCH SCH 3
                                      3
                                                              2
                                               (CH CO) O
                                                  3
                                                      2
                              ROH + (CH ) S + (PhCO )   ROCH SCH 3
                                                            2
                                      3 2
                                                2 2
              The MTM group is selectively removed under nonacidic conditions in aqueous
                                 +
              solutions containing Ag or Hg 2+  salts. The THP and MOM groups are stable under
              these conditions. 161  The MTM group can also be removed by reaction with methyl
              iodide, followed by hydrolysis of the resulting sulfonium salt in moist acetone. 162
                  Two substituted alkoxymethoxy groups are designed for cleavage involving
               -elimination. The 2,2,2-trichloroethoxymethyl groups can be cleaved by reducing
              agents, including zinc, samarium diiodide, and sodium amalgam. 164  The  -elimination
              results in the formation of a formaldehyde hemiacetal, which decomposes easily.
                                        2e –
                                                                     –
                         Cl CCH OCH OR     Cl + Cl C  CH 2  +  CH 2  O  +    OR
                                             –
                                   2
                                                 2
                              2
                          3
              The 2-(trimethylsilyl)ethoxymethyl group (SEM) can be removed by various fluoride
              sources, including TBAF, pyridinium fluoride, and HF. 165  This deprotection involves
              nucleophilic attack at silicon, which triggers  -elimination.
                 –
                                                                              –
                F +  (CH ) SiCH 2  CH OCH OR     (CH ) SiF +   CH 2  CH 2  +   CH 2  O   +    OR
                      3 3
                                                   3 3
                                     2
                                 2
              The SEM group can also be cleaved by MgBr . A noteworthy aspect of this method
                                                    2
              is that trisubstituted silyl ethers (see below) can survive.
                                                                    CH
                                                               CH 3
                       CH 3  CH 3                           OH         3
                  S  OSEM O  O               MgBr 2       S      O  O
                                                                        OSi(Ph) C(CH )
                                OSi(Ph) C(CH )  ether/  S                    2   3 3
                S                    2   3 3
                                            nitromethane  CH  CH
                CH 3  CH 3                                3   3
                                                                              Ref. 166
              161   E. J. Corey and M. G. Bock, Tetrahedron Lett., 3269 (1975).
              162   P. M. Pojer and S. J. Angyal, Tetrahedron Lett., 3067 (1976).
              163
                 J. C. Modina, M. Salomon, and K. S. Kyler, Tetrahedron Lett., 29, 3773 (1988).
              164   R. M. Jacobson and J. W. Clader, Synth. Commun., 9, 57 (1979); D. A. Evans, S. W. Kaldor, T. K. Jones,
                 J. Clardy, and T. J. Stout, J. Am. Chem. Soc., 112, 7001 (1990).
              165   B. H. Lipshutz and J. J. Pegram, Tetrahedron Lett., 21, 3343 (1980); B. H. Lipshutz and T. A. Miller,
                 Tetrahedron Lett., 30, 7149 (1989); T. Kan, M. Hashimoto, M. Yanagiya, and H. Shirahama, Tetrahedron
                 Lett., 29, 5417 (1988); J. D. White and M. Kawasaki, J. Am. Chem. Soc., 112, 4991 (1990); K. Sugita,
                 K. Shigeno, C. F. Neville, H. Sasai, and M. Shibasaki, Synlett, 325 (1994).
              166
                A. Vakalopoulos and H. M. R. Hoffmann, Org. Lett., 2, 1447 (2000).
   284   285   286   287   288   289   290   291   292   293   294