Page 291 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 291

aromatic radical anions. 177  Benzyl ethers can also be cleaved using formic acid, cyclo-  263
              hexene, or cyclohexadiene as hydrogen sources in transfer hydrogenolysis catalyzed
              by platinum or palladium. 178  Several nonreductive methods for cleavage of benzyl  SECTION 3.5
              ether groups have also been developed. Treatment with s-butyllithium, followed by  Installation and Removal
                                                                                         of Protective Groups
              reaction with trimethyl borate and then hydrogen peroxide liberates the alcohol. 179  The
              lithiated ether forms an alkyl boronate, which is oxidized as discussed in Section 4.5.2.
                              Li
                       s-BuLi
                                   B(OCH 3 ) 2     H 2 O 2
               ROCH 2 Ph    ROCHPh         ROCHPh       ROCHPh       ROH   +   PhCH     O
                                        (CH 3 O) 2 B
                                                          OB(OCH 3 ) 2
              Lewis acids such as FeCl and SnCl also cleave benzyl ethers. 180
                                   3
                                           4
                  Benzyl groups having 4-methoxy (PMB) or 3,5-dimethoxy (DMB) substituents
              can be removed oxidatively by dichlorodicyanoquinone (DDQ). 181  These reactions
              presumably proceed through a benzylic cation and the methoxy substituent is necessary
              to facilitate the oxidation.
                                                                     OH
                                                      H 2 O
                                 –2e –           +
               CH 3 O     CH 2 OR    CH 3 O      COR      CH 3 O      CHOR     ROH
                                                 H
                                 –H +
              These reaction conditions do not affect most of the other common hydroxy-protecting
              groups and the methoxybenzyl group is therefore useful in synthetic sequences that
              require selective deprotection of different hydroxy groups. 4-Methoxybenzyl ethers
              can also be selectively cleaved by dimethylboron bromide. 182
                  Benzyl groups are usually introduced by the Williamson reaction (Section 3.2.3).
              They can also be prepared under nonbasic conditions if necessary. Benzyl alcohols are
              converted to trichloroacetimidates by reaction with trichloroacetonitrile. These then
              react with an alcohol to transfer the benzyl group. 183

                                               NH                       O
                                                     ROH
                     ArCH OH + Cl CCN             ArCH OCCCl 3                   ROCH Ar   +   Cl CCNH 2
                                3
                                             2
                                                               2
                         2
                                                                      3
              Phenyldiazomethane can also be used to introduce benzyl groups. 184
              177
                 E. J. Reist, V. J. Bartuska, and L. Goodman, J. Org. Chem., 29, 3725 (1964); R. E. Ireland,
                 D. W. Norbeck, G. S. Mandel, and N. S. Mandel, J. Am. Chem. Soc., 107, 3285 (1985); R. E. Ireland
                 and M. G. Smith, J. Am. Chem. Soc., 110, 854 (1988); H.-J. Liu, J. Yip, and K.-S. Shia, Tetrahedron
                 Lett., 38, 2253 (1997).
              178   B. El Amin, G. M. Anatharamaiah, G. P. Royer, and G. E. Means, J. Org. Chem., 44, 3442 (1979);
                 A. M. Felix, E. P. Heimer, T. J. Lambros, C. Tzougraki, and J. Meienhofer, J. Org. Chem., 43, 4194
                 (1978); A. E. Jackson and R. A. W. Johnstone, Synthesis, 685 (1976); G. M. Anatharamaiah and
                 K. M. Sivandaiah, J. Chem. Soc., Perkin Trans., I, 490 (1977).
              179
                 D. A. Evans, C. E. Sacks, W. A. Kleschick, and T. R. Taber, J. Am. Chem. Soc., 101, 6789 (1979).
              180
                 M. H. Park, R. Takeda, and K. Nakanishi, Tetrahedron Lett., 28, 3823 (1987).
              181   Y. Oikawa, T. Yoshioka, and O. Yonemitsu, Tetrahedron Lett., 23, 885 (1982); Y. Oikawa, T. Tanaka,
                 K. Horita, T. Yoshioka, and O. Yonemitsu, Tetrahedron Lett., 25, 5393 (1984); N. Nakajima, T. Hamada,
                 T. Tanaka, Y. Oikawa, and O. Yonemitsu, J. Am. Chem. Soc., 108, 4645 (1986).
              182
                 N. Hebert, A. Beck, R. B. Lennox, and G. Just, J. Org. Chem., 57, 1777 (1992).
              183   H.-P. Wessel, T. Iverson, and D. R. Bundle, J. Chem. Soc., Perkin Trans., I, 2247 (1985); N. Nakajima,
                 K. Horita, R. Abe, and O. Yonemitsu, Tetrahedron Lett., 29, 4139 (1988); S. J. Danishefsky, S. DeNinno,
                 and P. Lartey, J. Am. Chem. Soc., 109, 2082 (1987).
              184
                 L. J. Liotta and B. Ganem, Tetrahedron Lett., 30, 4759 (1989).
   286   287   288   289   290   291   292   293   294   295   296