Page 299 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 299

The 4-pentenoyl group is easily removed from amides by I and can be used as a  271
                                                                 2
              protecting group. The mechanism of cleavage involves iodocyclization and hydrolysis
              of the resulting iminolactone (see Section 4.2.1). 239                        SECTION 3.5
                                                                                      Installation and Removal
                                                                                         of Protective Groups
                            O
                                            I 2      O         H O
                                                                2
                          RNCCH CH CH  CH 2     RN        CH 2 I   RNH 2
                               2
                                  2
                           H
                  Sulfonamides are very difficult to hydrolyze. However, a photoactivated reductive
              method for desulfonylation has been developed. 240  Sodium borohydride is used in
              conjunction with 1,2- or 1,4-dimethoxybenzene or 1,5-dimethoxynaphthalene. The
              photoexcited aromatic serves as an electron donor toward the sulfonyl group, which
              then fragments to give the deprotected amine. The NaBH reduces the radical cation
                                                             4
              and the sulfonyl radical.
                                              hν
                R NSO Ar +  CH 3 O     OCH 3       R N –  +  CH O  + .  OCH + ArSO 2 .
                                                                          3
                                                    2
                     2
                 2
                                                            3
              Table 3.2 summarizes the common amine-protecting groups. Reagents that permit
              protection of primary amino groups as cyclic bis-silyl derivatives have been developed.
              Anilines, for example, can be converted to disilazolidines. 241  These groups are stable to
              a number of reaction conditions, including generation and reaction of organometallic
              reagents. 242  They are readily removed by hydrolysis.
                                                                CH 3
                                                     CsF, HMPA      Si  CH 3
                        ArNH +  (CH ) SiCH CH Si(CH )  100°C   Ar  N
                                              3 2
                            2
                                 3 2
                                      2
                                         2
                                                                    Si
                                  H       H                     CH 3  CH 3
                                                              CH    CH 3
                                  (CH ) SiH       (PPh ) RhCl   3  Si
                                     3 2
                                                     3 3
                        ArNH 2   +                           Ar  N
                                  (CH ) SiH                       Si
                                     3 2
                                                              CH 3  CH 3
                  Amide nitrogens can be protected by 4-methoxy or 2,4-dimethoxyphenyl groups.
              The protecting group can be removed by oxidation with ceric ammonium nitrate. 243
              2,4-Dimethoxybenzyl groups can be removed using anhydrous trifluoroacetic acid. 244
              239   R. Madsen, C. Roberts, and B. Fraser-Reid, J. Org. Chem., 60, 7920 (1995).
              240
                 T. Hamada, A. Nishida, and O. Yonemitsu, Heterocycles, 12, 647 (1979); T. Hamada, A. Nishida,
                 Y. Matsumoto, and O. Yonemitsu, J. Am. Chem. Soc., 102, 3978 (1980).
              241   R. P. Bonar-Law, A. P. Davis, and B. J. Dorgan, Tetrahedron Lett., 31, 6721 (1990); R. P. Bonar-Law,
                 A. P. Davis, B. J. Dorgan, M. T. Reetz, and A. Wehrsig, Tetrahedron Lett., 31, 6725 (1990); S. Djuric,
                 J. Venit, and P. Magnus, Tetrahedron Lett., 22, 1787 (1981); T. L. Guggenheim, Tetrahedron Lett., 25,
                 1253 (1984); A. P. Davis and P. J. Gallagher, Tetrahedron Lett., 36, 3269 (1995).
              242
                 R. P. Bonar-Law, A. P. Davis, and J. P. Dorgan, Tetrahedron, 49, 9855 (1993); K. C. Grega,
                 M. R. Barbachyn, S. J. Brickner, and S. A. Mizsak, J. Org. Chem., 60, 5255 (1995).
              243   M. Yamaura, T. Suzuki, H. Hashimoto, J. Yoshimura, T. Okamoto, and C. Shin, Bull. Chem. Soc. Jpn.,
                 58, 1413 (1985); R. M. Williams, R. W. Armstrong, and J.-S. Dung, J. Med. Chem., 28, 733 (1985).
              244
                 R. H. Schlessinger, G. R. Bebernitz, P. Lin, and A. J. Pos, J. Am. Chem. Soc., 107, 1777 (1985);
                 P. DeShong, S. Ramesh, V. Elango, and J. J. Perez, J. Am. Chem. Soc., 107, 5219 (1985).
   294   295   296   297   298   299   300   301   302   303   304