Page 302 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 302

274                                                    O
                                                       Zn
                                        RC(OCH CCl )        RCR′ +  CH  CCl
      CHAPTER 3                                2  3 2  THF           2     2
                                         R′
      Functional Group                                                                 Ref. 253
      Interconversion
      by Substitution,
      Including Protection and  Another carbonyl-protecting group is the 1,3-oxathiolane derivative, which can
      Deprotection
                       be prepared by reaction with mercaptoethanol in the presence of a number of Lewis
                       acids including BF 3 254  and In OTf  3 255  or by heating with an acid catalyst with
                       azeotropic removal of water. 256  The 1,3-oxathiolanes are particularly useful when
                       nonacidic conditions are required for deprotection. The 1,3-oxathiolane group can be
                       removed by treatment with Raney nickel in alcohol, even under slightly alkaline condi-
                       tions. 257  Deprotection can also be accomplished by treating with a mild halogenating
                       agent, such as NBS, 258  tetrabutylammonium tribromide, 259  or chloramine-T. 260  These
                       reagents oxidize the sulfur to a halosulfonium salt and activate the ring to hydrolytic
                       cleavage.

                                                                    O
                                                                  H 2
                                     R  O                 R  O
                                                                        R 2 C  O
                                                             +
                                     R  S                 R  S
                                                             X
                                                           X = Br or Cl
                           Dithioketals, especially the cyclic dithiolanes and dithianes, are also useful
                       carbonyl-protecting groups. 261  These can be formed from the corresponding dithiols by
                       Lewis acid–catalyzed reactions. The catalysts that are used include BF ,Mg O SCF   ,
                                                                                     3
                                                                                          3 2
                                                                               3
                       Zn O SCF   , and LaCl . 262  S-Trimethylsilyl ethers of thiols and dithiols also react
                                           3
                                3 2
                            3
                       with ketones to form dithioketals. 263  Bis-trimethylsilyl sulfate in the presence of silica
                       also promotes formation of dithiolanes. 264  Di-n-butylstannyldithiolates also serve as
                       sources of dithiolanes and dithianes. These reactions are catalyzed by di-n-butylstannyl
                       ditriflate. 265
                                                 S       (n-Bu) 2 Sn(O 3 SCF 3 ) 2  S
                                R C  O  +  (n-Bu) Sn  (CH )n             R C   (CH )
                                                                                  2 n
                                                                          2
                                                      2
                                 2
                                              2
                                                 S                           S
                           The regeneration of carbonyl compounds from dithioacetals and dithiolanes is
                       often done with reagents that oxidize or otherwise activate the sulfur as a leaving
                       253   J. L. Isidor and R. M. Carlson, J. Org. Chem., 38, 544 (1973).
                       254
                          G. E. Wilson, Jr., M. G. Huang, and W. W. Scholman, Jr., J. Org. Chem., 33, 2133 (1968).
                       255
                          K. Kazahaya, N. Hamada, S. Ito, and T. Sato, Synlett, 1535 (2002).
                       256   C. Djerassi and M. Gorman, J. Am. Chem. Soc., 75, 3704 (1953).
                       257   C. Djerassi, E. Batres, J. Romo, and G. Rosenkranz, J. Am. Chem. Soc., 74, 3634 (1952).
                       258
                          B. Karimi, H. Seradj, and M. H. Tabaei, Synlett, 1798 (2000).
                       259
                          E. Mondal, P. R. Sahu, G. Bose, and A. T. Khan, Tetrahedron Lett., 43, 2843 (2002).
                       260   D. W. Emerson and H. Wynberg, Tetrahedron Lett., 3445 (1971).
                       261
                          A. K. Banerjee and M. S. Laya, Russ. Chem. Rev., 69, 947 (2000).
                       262
                          L. F. Fieser, J. Am. Chem. Soc., 76, 1945 (1954); E. J. Corey and K. Shimoji, Tetrahedron Lett., 24,
                          169 (1983); L. Garlaschelli and G. Vidari, Tetrahedron Lett., 31, 5815 (1990); A. T. Khan, E. Mondal,
                          P. R. Satu, and S. Islam, Tetrahedron Lett., 44, 919 (2003).
                       263   D. A. Evans, L. K. Truesdale, K. G. Grimm, and S. L. Nesbitt, J. Am. Chem. Soc., 99, 5009 (1977).
                       264   H. K. Patney, Tetrahedron Lett., 34, 7127 (1993).
                       265
                          T. Sato, J. Otero, and H. Nozaki, J. Org. Chem., 58, 4971 (1993).
   297   298   299   300   301   302   303   304   305   306   307