Page 320 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 320

292              1,2-Dimethylcyclohexene is an example of an alkene for which the stereochemistry of

                       hydrogen chloride addition is dependent on the solvent and temperature. At −78 C
      CHAPTER 4        in dichloromethane, 88% of the product is the result of syn addition, whereas at 0 C

                                                                     8
      Electrophilic Additions  in ether, 95% of the product results from anti addition. Syn addition is particularly
      to Carbon-Carbon
      Multiple Bonds   common with alkenes having an aryl substituent. Table 4.1 lists several alkenes for
                       which the stereochemistry of addition of hydrogen chloride or hydrogen bromide has
                       been studied.
                           The stereochemistry of addition depends on the details of the mechanism. The
                       addition can proceed through an ion pair intermediate formed by an initial protonation
                       step. Most alkenes, however, react via a complex that involves the alkene, hydrogen
                       halide, and a third species that delivers the nucleophilic halide. This termolecular
                       mechanism is generally pictured as a nucleophilic attack on an alkene-hydrogen halide
                       complex. This mechanism bypasses a discrete carbocation and exhibits a preference
                       for anti addition.

                                                           Cl
                                                           H
                                                         C  C


                                                     Nu:
                       The major factor in determining which mechanism is followed is the stability of the
                       carbocation intermediate. Alkenes that can give rise to a particularly stable carbocation


                              Table 4.1. Stereochemistry of Addition of Hydrogen Halides to Alkenes
                                    Alkene          Hydrogen halide    Stereochemistry

                            1,2-Dimethylcyclohexene a   HBr      anti
                            1,2-Dimethylcyclohexene a   HCl      Solvent and temperature dependent
                            Cyclohexene b               HBr      anti
                            Z-2-Butene c                DBr      anti
                            E-2-Butene c                DBr      anti
                            1-Methylcyclopentene d      HCl      anti
                            1,2-Dimethylcyclopentene e  HBr      anti
                            Norbornene f                HBr      syn and rearrangement
                            Norbornene g                HCl      syn and rearrangement
                            E-1-Phenylpropene h         HBr      syn (9:1)
                            Z-1-Phenylpropene h         HBr      syn (8:1)
                            Bicyclo[3.1.0]hex-2-ene i   DCl      syn
                            1-Phenyl-4-(t-butyl)cyclohexene j  DCl  syn
                            a. G. S. Hammond and T. D. Nevitt, J. Am. Chem. Soc., 76, 4121 (1954); R. C. Fahey and C. A. McPherson,
                             J. Am. Chem. Soc., 93, 2445 (1971); K. B. Becker and C. A. Grob, Synthesis, 789 (1973).
                            b. R. C. Fahey and R. A. Smith, J. Am. Chem. Soc., 86, 5035 (1964).
                            c. D. J. Pasto, G. R. Meyer, and B. Lepeska, J. Am. Chem. Soc., 96, 1858 (1974).
                            d. Y. Pocker and K. D. Stevens, J. Am. Chem. Soc., 91, 4205 (1969).
                            e. G. S. Hammond and C. H. Collins, J. Am. Chem. Soc., 82, 4323 (1960).
                            f. H. Kwart and J. L. Nyce, J. Am. Chem. Soc., 86, 2601 (1964).
                            g. J. K. Stille, F. M. Sonnenberg, and T. H. Kinstle, J. Am. Chem. Soc., 88, 4922 (1966).
                            h. M. J. S. Dewar and R. C. Fahey, J. Am. Chem. Soc., 85, 3645 (1963).
                            i. P. K. Freeman, F. A. Raymond, and M. F. Grostic, J. Org. Chem., 32, 24 (1967).
                            j. K. D. Berlin, R. O. Lyerla, D. E. Gibbs, and J. P. Devlin, J. Chem. Soc., Chem. Commun., 1246 (1970).
                        8
                          K. B. Becker and C. A. Grob, Synthesis, 789 (1973).
   315   316   317   318   319   320   321   322   323   324   325