Page 373 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 373

large scale. 180  Conditions that permit oxidation of organoboranes to alcohols using  345
              molecular oxygen, 181  sodium peroxycarbonate 182  or amine oxides 183  as oxidants have
                                                                                            SECTION 4.5
              also been developed. The reaction with molecular oxygen is particularly effective in
              perfluoroalkane solvents. 184                                               Addition at Double
                                                                                      Bonds via Organoborane
                                                                                             Intermediates
                                                H )
                                          1) HB(C 2 5 2
                                                              OH
                                        2) O , Br(CF ) CF 3
                                                 2 7
                                           2
                                                              82%
                  More vigorous oxidants such as Cr(VI) reagents effect replacement of boron and
              oxidation to the carbonyl level. 185

                                      Ph               Ph
                                            1) B H         O
                                               2 6
                                            2) K Cr O 7
                                                 2
                                               2
              An alternative procedure for oxidation to ketones involves treatment of the alkylborane
              with a quaternary ammonium perruthenate salt and an amine oxide 186  (see Entry 6 in
              Scheme 4.9). Use of dibromoborane-dimethyl sulfide for hydroboration of terminal
              alkenes, followed by hydrolysis and Cr(VI) oxidation gives carboxylic acids. 187


                               1) BHBr 2 S(CH )             Cr(VI)
                                         3 2
                      RCH  CH 2             RCH CH B(OH) 2         RCH CO H
                                                                         2
                                                   2
                                                2
                                                                      2
                                   2) H O                 HOAc, H 2 O
                                      2
                  The boron atom can also be replaced by an amino group. 188  The reagents that effect
              this conversion are chloramine or hydroxylamine-O-sulfonic acid, and the mechanism
              of these reactions is very similar to that of the hydrogen peroxide oxidation of organo-
              boranes. The nitrogen-containing reagent initially reacts as a nucleophile by adding at
              boron andaBtoN rearrangement with expulsion of chloride or sulfate ion follows.
              Usually only two of the three alkyl groups migrate. As in the oxidation, the migration
              step occurs with retention of configuration. The amine is freed by hydrolysis.
                         NH X   –                  NH X           H O
                                                      2
                           2
                                                                   2
                   R B        R B  NH  X   R B  NH       RB(NHR) 2      2  RNH 2
                                             2
                               2
                    3
                                R               R
                     X = Cl or OSO 3
              180
                 D. H. B. Ripin, W. Cai, and S. T. Brenek, Tetrahedron Lett., 41, 5817 (2000).
              181   H. C. Brown, M. M. Midland, and G. W. Kabalka, J. Am. Chem. Soc., 93, 1024 (1971).
              182   G. W. Kabalka, P. P. Wadgaonkar, and T. M. Shoup, Tetrahedron Lett., 30, 5103 (1989).
              183
                 G. W. Kabalka and H. C. Hedgecock, Jr., J. Org. Chem., 40, 1776 (1975); R. Koster and Y. Monta,
                 Liebigs Ann. Chem., 704, 70 (1967).
              184   I. Klement and P. Knochel, Synlett, 1004 (1996).
              185
                 H. C. Brown and C. P. Garg, J. Am. Chem. Soc., 83, 2951 (1961); H. C. Brown, C. Rao, and S. Kulkarni,
                 J. Organomet. Chem., 172, C20 (1979).
              186
                 M. H. Yates, Tetrahedron Lett., 38, 2813 (1997).
              187   H. C. Brown, S. V. Kulkarni, V. V. Khanna, V. D. Patil, and U. S. Racherla, J. Org. Chem., 57, 6173
                 (1992).
              188
                 M. W. Rathke, N. Inoue, K. R. Varma, and H. C. Brown, J. Am. Chem. Soc., 88, 2870 (1966);
                 G. W. Kabalka, K. A. R. Sastry, G. W. McCollum, and H. Yoshioka, J. Org. Chem., 46, 4296 (1981).
   368   369   370   371   372   373   374   375   376   377   378