Page 378 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 378

350              simple cycloalkenes give low enantioselectivity (5–30%). Interestingly, vinyl ethers
                       exhibit good enantioselectivity for both the E- and Z-isomers. 201
      CHAPTER 4
      Electrophilic Additions  CH 3 O                OH     CH 3 O  CH               O   OH
      to Carbon-Carbon             1)  Ipc BH  CH O                  3  1)  Ipc BH  CH 3
                                              3
                                      2
      Multiple Bonds                                                       2
                                         –
                         CH 3  CH 3  2)  H 2O ,  OH  CH 3  CH 3  CH 3  2)  H 2O ,  OH  CH 3  CH 3
                                                                             –
                                       2
                                                                            2
                                                72% yield                           77% yield
                                                > 97% e.e.                          90% e.e.
                           Monoisocampheylborane  IpcBH   can be prepared in enantiomerically pure form
                                                      2
                       by separation of a TMEDA adduct. 202  When this monoalkylborane reacts with a
                       prochiral alkene, one of the diastereomeric products is normally formed in excess and
                       can be obtained in high enantiomeric purity by an appropriate separation. 203  Oxidation
                       of the borane then provides the corresponding alcohol having the enantiomeric purity
                       achieved for the borane.

                                    BH 2  R 3    R 1      H R 3    R 1    H  R 3   R 1
                                      +     C  C        IpcB  C  C  H  or   IpcB  C  C  H
                                          H      R 2        H     R 2       H      R 2

                           As oxidation also converts the original chiral terpene-derived group to an alcohol,
                       it is not directly reusable as a chiral auxiliary. Although this is not a problem with
                       inexpensive materials, the overall efficiency of generation of enantiomerically pure
                       product is improved by procedures that can regenerate the original terpene. This can
                       be done by heating the dialkylborane intermediate with acetaldehyde. The  -pinene is
                       released and a diethoxyborane is produced. 204

                             Me
                                                     CH                       CH     CH
                                       CH 3            3                        3      3
                                 BH 2            H        CH CH  O
                                    +          IpcB         3      (C 2 5  2     +
                                                                     H O) B

                       The usual oxidation conditions then convert this boronate ester to an alcohol. 205
                           The corresponding haloboranes are also useful for enantioselective hydrobo-
                       ration. Isopinocampheylchloroborane can achieve 45–80% e.e. with representative
                       alkenes. 206  The corresponding bromoborane achieves 65–85% enantioselectivity with

                       simple alkenes when used at −78 C. 207

                       201   D. Murali, B. Singaram, and H. C. Brown, Tetrahedron: Asymmetry, 11, 4831 (2000).
                       202
                          H. C. Brown, J. R. Schwier, and B. Singaram, J. Org. Chem., 43, 4395 (1978); H. C. Brown,
                          A. K. Mandal, N. M. Yoon, B. Singaram, J. R. Schwier, and P. K. Jadhav, J. Org. Chem., 47, 5069
                          (1982).
                       203   H. C. Brown and B. Singaram, J. Am. Chem. Soc., 106, 1797 (1984); H. C. Brown, P. K. Jadhav, and
                          A. K. Mandal, J. Org. Chem., 47, 5074 (1982).
                       204
                          H. C. Brown, B. Singaram, and T. E. Cole, J. Am. Chem. Soc., 107, 460 (1985); H. C. Brown, T. Imai,
                          M. C. Desai, and B. Singaram, J. Am. Chem. Soc., 107, 4980 (1985).
                       205   D. S. Matteson and K. M. Sadhu, J. Am. Chem. Soc., 105, 2077 (1983).
                       206   U. P. Dhokte, S. V. Kulkarni, and H. C. Brown, J. Org. Chem., 61, 5140 (1996).
                       207
                          U. P. Dhokte and H. C. Brown, Tetrahedron Lett., 37, 9021 (1996).
   373   374   375   376   377   378   379   380   381   382   383