Page 429 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 429

402              subject to overreduction. At higher temperatures, where the intermediate undergoes
                       elimination, diisobutylaluminum hydride reduces esters to primary alcohols.
      CHAPTER 5
                             CH O                           CH 3 O
      Reduction of             3                   (i-Bu) AlH,
                                                       2
      Carbon-Carbon Multiple                        toluene
      Bonds, Carbonyl       CH O          N                 CH O         N
      Groups, and Other        3                    –60°C      3
      Functional Groups
                                              C H                            C H
                                                                               2 5
                                               2 5
                                            CO C H                          CH  O
                                          CH 2  2 2 5                    CH 2       83%
                                                                                        Ref. 84
                                       CH 3             (i-Bu) AlH  CH 3
                                               CO C H      2               CH  O
                                                  2 2 5
                                                         –90°C
                                   CH SCH O                    CH SCH O                 Ref. 85
                                                                 3
                                                                     2
                                      3
                                          2
                               CH 2    CH 3           1)(i-Bu) 2 AlH,  CH 2    CH 3
                                                        hexane
                         H C                 CO C H               H C                CH = O
                                                                   2
                           2
                                               2 2 5
                                                        –78°C
                                                    2) H O, tartaric acid          80%
                                                       2
                                                                                        Ref. 86
                           Selective  reduction  to  aldehydes  can  also  be  achieved  using
                       N-methoxy-N-methylamides. 87  LiAlH and DiBAlH have both been used as the
                                                       4
                       hydride donor. The partial reduction is again the result of the stability of the initial
                       reduction product. The N-methoxy substituent leads to a chelated structure that is
                       stable until acid hydrolysis occurs during workup.
                                     O                    O   M
                                                       R            H +
                                   RCNOCH   +  M   H          OCH 3      RCH   O
                                          3
                                                        H  N        H O
                                                                     2
                                      CH 3
                                                           CH 3
                           Another useful approach to aldehydes is by partial reduction of nitriles to imines.
                       The reduction stops at the imine stage because of the low electrophilicity of the
                       deprotonated imine intermediate. The imines are then hydrolyzed to the aldehyde.
                       Diisobutylaluminum hydride seems to be the best reagent for this purpose. 88 89
                                                          AlH
                                                    1) (i-Bu) 2
                             CH CH  CHCH 2 CH CH C  N         CH CH  CHCH CH CH CH   O
                                            2
                                                                3
                                                                                2
                                                                             2
                                                                          2
                                               2
                               3
                                                       +
                                                    2)H , H O
                                                         2
                                                                                   64%
                        84
                          C. Szantay, L. Toke, and P. Kolonits, J. Org. Chem., 31, 1447 (1966).
                        85   G. E. Keck, E. P. Boden, and M. R. Wiley, J. Org. Chem., 54, 896 (1989).
                        86   P. Baeckstrom, L. Li, M. Wickramaratne, and T. Norin, Synth. Commun., 20, 423 (1990).
                        87
                          S. Nahm and S. M. Weinreb, Tetrahedron Lett., 22, 3815 (1981).
                        88   N. A. LeBel, M. E. Post, and J. J. Wang, J. Am. Chem. Soc., 86, 3759 (1964).
                        89
                          R. V. Stevens and J. T. Lai, J. Org. Chem., 37, 2138 (1972); S. Trofimenko, J. Org. Chem., 29, 3046
                          (1964).
   424   425   426   427   428   429   430   431   432   433   434