Page 449 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 449

422                                       Scheme 5.6. (Continued)

      CHAPTER 5         a. K. G. Hull, M. Visnick, W. Tautz, and A. Sheffron, Tetrahedron, 53, 12405 (1997).
                       b. E. J. Corey, R. K. Bakshi, S. Shibata, C.-P. Chen, and V. K. Singh, J. Am. Chem. Soc., 109, 7925 (1987).
      Reduction of      c. D. J. Mathre, A. S. Thompson, A. W. Douglas, K. Hoogsteen, J. D. Carroll, E. G. Corley, and E. J. J. Grabowski, J.
      Carbon-Carbon Multiple  Org. Chem., 58, 2880 (1993).
      Bonds, Carbonyl  d. T. K. Jones, J. J. Mohan, L. C. Xavier, T. J. Blacklock, D. J. Mathre, P. Sohar, E. T. T. Jones, R. A. Reamer,
      Groups, and Other  F. E. Roberts, and E. J. J. Grabowski, J. Org. Chem., 56, 763 (1991).
      Functional Groups  e. E. J. Corey, A. Guzman-Perez, and S. E. Lazerwith, J. Am. Chem. Soc., 119, 11769 (1997).
                        f. B. T. Cho and Y. S. Chun, J. Org. Chem., 63, 5280 (1998).
                       g. R. Hett, Q. K. Fang, Y. Gao, S. A. Wald, and C. H. Senanayake, Org. Proc. Res. Dev., 2, 96 (1998).
                       h. J. Duquette, M Zhang, L. Zhu, and R. S. Reeves, Org. Proc. Res. Dev., 7, 285 (2003).
                        i. L. Bialy and H. Waldmann, Chem. Eur. J., 10, 2759 (2004).
                        j. B. M. Trost, J. L. Guzner, O. Dirat, and Y. H. Rhee, J. Am. Chem. Soc., 124, 10396 (2002).
                       k. E. A. Reiff, S. K. Nair, B. S. N. Reddy, J. Inagaki, J. T. Henri, J. F. Greiner, and G. I. Georg, Tetrahedron Lett., 45,
                         5845 (2004).
                        l. M. Lerm, H.-J. Gais, K. Cheng, and C. Vermeeren, J. Am. Chem. Soc., 125, 9653 (2003).
                       m. D. P. Stamos, S. S. Chen, and Y. Kishi, J. Org. Chem., 62, 7552 (1997).
                       n. E. J. Corey and B. E. Roberts, J. Am. Chem. Soc., 119, 12425 (1997).




                              O                            OSiH(Ph) 2           O
                                      5 mol % CuCl
                                      5 mol % NaOt Bu                Ph 3 SiF 2    R′
                                                                      R′X
                                      5 mol % S-p-tol-BINAP
                                 R    Ph 2 SiH 2             R                    R
                                                                               e.e. > 90%
                                                                               dr > 15:1

                       When necessary, the trans:cis ratio can be improved by base-catalyzed equilibration.




                       5.3.4. Reduction of Other Functional Groups by Hydride Donors
                           Although reductions of the common carbonyl and carboxylic acid derivatives are
                       the most prevalent uses of hydride donors, these reagents can reduce a number of
                       other groups in ways that are of synthetic utility. Halogen and sulfonate leaving groups
                       can undergo replacement by hydride. Both aluminum and boron hydrides exhibit this
                       reactivity, and lithium trialkylborohydrides are especially reactive. 160  The reduction is
                       particularly rapid and efficient in polar aprotic solvents such as DMSO, DMF, and
                       HMPA. Table 5.6 gives some indication of the reaction conditions. The normal factors
                       in susceptibility to nucleophilic attack govern reactivity with I > Br > Cl being the
                       order in terms of the leaving group and benzyl ∼ allyl > primary > secondary >
                       tertiary in terms of the substitution site. 161  For primary alkyl groups, it is likely that
                       the reaction proceeds by an S 2 mechanism. However, the range of halides that can
                                               N
                       be reduced includes aryl halides and bridgehead halides, which cannot react by the
                       S 2 mechanism. 162  The loss of stereochemical integrity in the reduction of vinyl
                        N
                       halides suggests the involvement of radical intermediates. 163  Formation and subsequent


                       160
                          S. Krishnamurthy and H. C. Brown, J. Org. Chem., 45, 849 (1980).
                       161   S. Krishnamurthy and H. C. Brown, J. Org. Chem., 47, 276 (1982).
                       162   C. W. Jefford, D. Kirkpatrick, and F. Delay, J. Am. Chem. Soc., 94, 8905 (1972).
                       163
                          S. K. Chung, J. Org. Chem., 45, 3513 (1980).
   444   445   446   447   448   449   450   451   452   453   454