Page 471 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 471

444                                       Scheme 5.12. (Continued)

      CHAPTER 5         a. R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and M. W. McLamore, J. Am. Chem. Soc., 74, 4223 (1952).
                       b. J. A. Marshall and H. Roebke, J. Org. Chem., 34, 4188 (1969).
      Reduction of      c. A. C. Cope, J. W. Barthel, and R. D. Smith, Org. Synth., 1V, 218 (1963).
      Carbon-Carbon Multiple  d. T. Ibuka, K. Hayashi, H. Minakata, and Y. Inubushi, Tetrahedron Lett., 159 (1979).
      Bonds, Carbonyl   e. E. J. Corey, E. J. Trybulski, L. S. Melvin, Jr., K. C. Nicolaou, J. A. Secrist, R. Lett, P. W. Sheldrake, J. R. Falck,
      Groups, and Other  D. J. Brunelle, M. F. Haslanger, S. Kim, and S. Yoo, J. Am. Chem. Soc., 100, 4618 (1978).
      Functional Groups  f. P. A. Grieco, E. Williams, H. Tanaka, and S. Gilman, J. Org. Chem., 45, 3537 (1980).
                       g. E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 86, 1639 (1964).
                       h. L. E. Overman and C. Fukaya, J. Am. Chem. Soc., 102, 1454 (1980).
                        i. J. Castro, H. Sorensen, A. Riera, C. Morin, A. Moyano, M. A. Pericas, and A. E. Greene, J. Am. Chem. Soc., 112, 9388
                         (1990).
                        j. S. Hanessian, C. Girard, and J. L. Chiara, Tetrahedron Lett., 33, 573 (1992).

                       5.6.3. Reductive Coupling of Carbonyl Compounds

                           As reductions by metals often occur by one-electron transfers, radicals are
                       involved as intermediates. When the reaction conditions are adjusted so that coupling
                       competes favorably with other processes, the formation of a carbon-carbon bond can
                       occur. The reductive coupling of acetone to 2,3-dimethylbutane-2,3-diol (pinacol) is
                       an example of such a reaction.

                                                    Mg  Hg
                                                                       3 2
                                                              3 2
                                           (CH ) C  O      (CH ) C  C(CH )
                                              3 2
                                                              HO   OH
                                                                                       Ref. 236
                       Reduced forms of titanium are currently the most versatile and dependable reagents for
                       reductive coupling of carbonyl compounds. These reagents are collectively referred to
                       as low-valent titanium. Either diols or alkenes can be formed, depending on the condi-
                       tions. 237  Several different procedures have evolved for titanium-mediated coupling.
                       One procedure involves prereduction of TiCl with strong reducing agents such as
                                                             3
                       LiAlH , 238  potassium on graphite  C K , 239  or Na-naphthalenide. 240b  The reductant
                            4                         8
                       prepared in this way is quite effective at coupling reactants with several oxygen
                       substituents.
                                         OC(CH )                        OC(CH )
                                                                             3 3
                                               3 3
                                                  OTBDPS                        OTBDPS
                                TESO                           TESO
                                      H                             H
                                                        TiCl 3            CH
                                            CH 3                            3
                             O  CH                      C K
                                                         8
                                    O
                                                                                       Ref. 240
                       236
                          R. Adams and E. W. Adams, Org. Synth., I, 448 (1932).
                       237   J. E. McMurry, Chem. Rev., 89, 1513 (1989).
                       238
                          J. E. McMurry and M. P. Fleming, J. Org. Chem., 41, 896 (1976); J. E. McMurry and L. R. Krepski,
                          J. Org. Chem., 41, 3929 (1976); J. E. McMurry, M. P. Fleming, K. L. Kees, and L. R. Krepski, J. Org.
                          Chem., 43, 3255 (1978); J. E. McMurry, Acc. Chem. Res., 16, 405 (1983).
                       239   (a) A. Furstner and H. Weidmann, Synthesis, 1071 (1987); (b) D. L. J. Clive, C. Zhang, K. S. K. Murthy,
                          W. D. Hayward, and S. Daigneault, J. Org. Chem., 56, 6447 (1991).
                       240
                          D. L. J. Clive, K. S. K. Murthy, A. G. H. Wee, J. S. Prasad, G. V. J. Da Silva, M. Majewski,
                          P. C. Anderson, C. F. Evans, R. D. Haugen, L. D. Heerze, and J. R. Barrie, J. Am. Chem. Soc., 112,
                          3018 (1990).
   466   467   468   469   470   471   472   473   474   475   476