Page 607 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 607

Scheme 6.17. (Continued)                                  581

                   9 i                1) LDA              OH  S                             SECTION 6.5
                          OH  S
                                      2) CH 2  CHCH 2 Br  CH 3                            [2,3]-Sigmatropic
                     CH 3                                                                  Rearrangements
                                                               N(CH 3 ) 2
                                       3) r.t. 12–72 h
                               N(CH 3 ) 2
                                                                 70%; 85:15 syn:anti
                   a. F. E. Ziegler and G. B. Bennett, J. Am. Chem. Soc., 95, 7458 (1973).
                   b. A. R. Daniewski, P. M. Wovkulich, and M. R. Uskokovic, J. Org. Chem. ,57, 7133 (1992).
                   c. K. C. Nicolaou, P. Bertinato, A. D. Piscopio, T. K. Chakraborty, and N. Minowa, J. Chem. Soc., Chem.
                    Commun., 619 (1993).
                   d. T.-P. Loh and Q.-Y. Hu, Org. Lett., 3, 279 (2001).
                   e. C.-Y. Chen and D. J. Hart, J. Org. Chem., 58, 3840 (1993).
                   f. K. Neuschutz, J.-M. Simone, T. Thyrann, and R. Neier, Helv. Chim. Acta, 83, 2712 (2000).
                   g. H. Ovaa, J. D. C. Codee, B. Lastdrager, H. Overkleeft, G. A.van der Marel, and J. H. van Boom,
                    Tetrahedron Lett., 40, 5063 (1999).
                   h. L. E. Overman and J. Shim, J. Org. Chem., 58, 4662 (1993).
                   i. P. Beslin and B. Lelong, Tetrahedron, 53, 17253 (1997).

              6.5. [2,3]-Sigmatropic Rearrangements


                  The [2,3]-sigmatropic class of rearrangements is represented by two generic
              charge types, neutral and anionic.

                                      Y                              CH  Z
                             –             or         CHZ
                           +  Y                                       –
                       R   X    R     X        R   X           R     X
                               Neutral                        Anionic
                                      –
                               –
                                             –
                        X = N +  O ; S +  O ; Se +  O ;    X = O; Z = EWG
                                         –
                               –
                           N +  C HZ; S +  CH Z
                        Z = EWG
              The rearrangements of allylic sulfoxides, selenoxides, and amine oxides are an example
              of the first type. Allylic sulfonium ylides and ammonium ylides also undergo [2,3]-
              sigmatropic rearrangements. Rearrangements of carbanions of allylic ethers are the
              major example of the anionic type. These reactions are considered in the following
              sections.


              6.5.1. Rearrangement of Allylic Sulfoxides, Selenoxides, and Amine Oxides

                  The rearrangement of allylic sulfoxides to allylic sulfenates was first studied in
              connection with the mechanism of racemization of allyl aryl sulfoxides. 272  Although
              the allyl sulfoxide structure is strongly favored at equilibrium, rearrangement through
              the achiral allyl sulfenate provides a low-energy pathway for racemization.

                            O –   CH 2        O  CH 2          O –   CH 2
                            S     CH       ArS    CH           S     CH
                         Ar  +  CH 2                        Ar  +  CH 2
                                               CH 2

              272
                 R. Tang and K. Mislow, J. Am. Chem. Soc., 92, 2100 (1970).
   602   603   604   605   606   607   608   609   610   611   612